【锂电池健康状态预测】基于布谷鸟算法优化BP神经网络实现锂电池健康状态预测附含Matlab代码

简介: 【锂电池健康状态预测】基于布谷鸟算法优化BP神经网络实现锂电池健康状态预测附含Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

锂电池健康状态(SOH)的预测是电动汽车锂电池管理系统的最重要的关键技术之一;传统的误差逆向传播(BP)神经网络容易使权值和阈值陷入局部最优,从而导致预测结果不精确;结合布谷鸟搜索算法(CS)的全局优化能力,提出一种基于CS算法优化BP神经网络的锂电池SOH预测方法,该方法的核心在于优化BP神经网络的初始权值和阈值,从而减小算法对初始值的依赖;为了验证算法的泛化性,利用美国国家航空航天局开源锂电池数据集6号电池和7号电池进行仿真实验,仿真得到该算法预测SOH的均方根误差(RMSE)分别为0.265 8和0.262 0,平均绝对百分比误差(MAPE)分别为0.331 9%和0.260 5%;通过与BP神经网络,粒子群优化的BP神经网络(PSO-BP),遗传算法优化的BP神经网络(GA-BP)对比,布谷鸟算法优化的BP神经网络(CS-BP)具有更小的预测误差.

⛄ 部分代码

Ts=0.00001; fs=1/Ts; Tm=0.002;EndTime=0.004-Ts; %2s  Nset=(EndTime+Ts)/Ts;y=zeros(Nset,1); i=0; xd=zeros(1,N); while i<N      i=i+1;  switch (x(i))      case 00          [u1,time1]=gensig('sin',Tm/1,EndTime,Ts);          xd(i)=1;      case 01          [u1,time1]=gensig('sin',Tm/2,EndTime,Ts);            xd(i)=2;      case 10         [u1,time1]=gensig('sin',Tm/3,EndTime,Ts);           xd(i)=3;      case 11          [u1,time1]=gensig('sin',Tm/4,EndTime,Ts);            xd(i)=4;      otherwise           disp( '输入错误');  endER1=zeros(1,9); count=1;NT=EndTime*fs+1;for i=-8:0    j=0;    ersum=0;while (j<60)   y1 = awgn(FHsignal,i,'measured'); z1=hilbert(y1);[tfr,dgr,gam]=TFRGABOR(z1,length(z1)/10,length(z1)/100,h,0);fmax3=max(abs(tfr));% figure(10)% plot(fmax3)fFH3=abs(fft(fmax3));[maxr3,f3]=max(abs(fFH3(2:length(fFH3)/2)));N3=length(z)/f3;er=abs(N3-NT)/NT*100;% T3=N3*Ts;% Endtime=EndTime+Ts;% er1=abs(T3-Endtime);% er=er1/(Endtime);ersum=er+ersum;j=j+1;endaverage=ersum/60;ER1(count)=average;count=count+1;end;sdb=-8:0; figure(5) plot(sdb,ER1, '-r');  xlabel('snr/dB')

⛄ 运行结果

⛄ 参考文献

[1]魏新尧, 佘世刚, 容伟,等. 基于布谷鸟算法优化BP神经网络的锂电池健康状态预测[J]. 计算机测量与控制, 2021, 029(004):65-69,75.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
2月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
295 5
|
2月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
214 2
|
2月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
282 0
|
3月前
|
机器学习/深度学习 缓存 算法
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
405 1
|
12月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
265 17
|
12月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
227 10
|
12月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
235 10
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。

热门文章

最新文章