m基于MATLAB和simulink实现模糊控制器以及模糊神经网络控制器

简介: m基于MATLAB和simulink实现模糊控制器以及模糊神经网络控制器

1.算法仿真效果
matlab2017b仿真结果如下:

2103bb92f1801dee34ba6aae3bd597e1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
16c7f5afbcd100443878d1d7059a0c22_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
b4a2edcc02ab1ae7fb4fd4cd9204ac88_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
928579542a29eee294eb3bc509d8953f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
8a36243a8c3ab8aaaaa1f2492fa3059d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1659060b71f703098994631eca200b69_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
a013e1ba6e3d6762050cc405992f1fc2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

    模糊神经网络控制在控制领域里目前已经成为一个研究热点,其原因在于两者之间的互补性质。神经网络和模糊系统均属于无模型的估计器和非线性动力学系统,也是一种处理不确定性、非线性和其它不确定问题(ill-posed problem)的有力工具。但两者之间的特性却存在很大的差异.模糊系统中知识的抽取和表达比较方便,它比较适合于表达那些模糊或定性的知识,其推理方式比较类似于人的思维模式。但是一般说来模糊系统缺乏自学习和自适应能力,要设计和实现模糊系统的自适应控制是比较困难的。而神经网络则可直接从样本中进行有效的学习,它具有并行计算、分布式信息存贮、容错能力强以及具备自适应学习功能等一系列优点。正是由于这些优点,神经网络的研究受到广泛的关注并吸引了许多研究工作者的兴趣。

   在模糊系统中,模糊模型的表示主要有两种:一种是模糊规则的后件是输出量的某一模糊集合,称它为模糊系统的标准模型或Mamdani模型表示;另一种是模糊规则的后件是输入语言变量的函数,典型的情况是输入变量的线性组合,称它为模糊系统的Takagi—Sugeno模型。下面首先讨论基于Mamdani模型的模糊神经网络。

   对于多输入多输出(MIMO)的模糊规则可以分解为多个多输入单输出(MISO)的模糊规则。因此不失一般性,下面只讨论MISO模糊系统。 图为一基于标准模型的MISO模糊系统的原理结构图。其中χRn,yR。如果该模糊系统的输出作用于一个控制对象,那么它的作用便是一个模糊逻辑控制器。否则,它可用于模糊逻辑决策系统、模糊逻辑诊断系统等其它方面。

设输入向量X = [x1 x2 …xn]T,每个分量xi均为模糊语言变量,并设:

                  T(xi) = {Ai1,Ai2,…,Aimi}  i = 1,2,…,n

  其中,Aij (j = 1,2,…,mi)是xi的第j个语言变量值,它是定义在论域Ui上的一个模糊集合。相应的隶属度函数为μA i j (xi)(i = 1,2,…,n;j = 1,2,…,mi)。

 输出量y也为模糊语言变量且T(y) = {B1,B2,…,Bmy}。其中Bj(j = 1,2,…,my)是y的第j个语言变量值,它是定义在论域Uy上的模糊集合。相应的隶属度函数为μB j(y)。

 由于计算上式的积分很麻烦,实际计算时通常用下面的近似公式

049c557979a15e614409952a4bbf0719_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   根据上面给出的模糊系统的模糊模型,可设计出如图6-2所示的模糊神经网络结构。图中所示为MIMO系统,它是上面所讨论的MISO情况的简单推广。

2bd10f560a889c3b9c6aa5ac7af8782a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

     模糊神经网络虽然也是局部逼近网络,但是它是按照模糊系统模型建立的,网络中的各个节点及所有参数均有明显的物理意义,因此这些参数的初值可以根据系统的模糊或定性的知识来加以确定,然后利用上述的学习算法可以很快收敛到要求的输入输出关系,这是模糊神经网络比前面单纯的神经网络的优点所在。同时由于它具有神经网络的结构,因而参数的学习和调整比较容易,这是它比单纯的模糊逻辑系统的优点所在。

   基于Takagi-Sugeno模型的模糊神经网络可以从另一角度来认识它的输入输出映射关系,若各输入分量的分割是精确的,即相当于隶属度函数为互相拼接的超矩形函数,则网络的输出相当于是原光滑函数的分段线性近似,即相当于用许多块超平面来拟合一个光滑曲面。网络中的  参数便是这些超平面方程的参数,这样只有当分割越精细时,拟合才能越准确。而实际上这里的模糊分割互相之间是有重叠的,因此即使模糊分割数不多,也能获得光滑和准确的曲面拟合。

3.MATLAB核心程序
4c2a1a39d63305b32f0bee5ab8fcdad6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
a90bb99b1fe5ac789300ab3b0cfc781c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

[x2,mf2] = plotmf(patient,'input',2);
[x3,mf3] = plotmf(patient,'input',3);
[x4,mf4] = plotmf(patient,'input',4);
[x5,mf5] = plotmf(patient,'input',5);
gensurf(patient);
showrule(patient);
figure
plot(x1,mf1);
 
%Mean Absolute Error
%Mean Absolute Error
%Mean Absolute Error
ty = evalfis(T(:,1:5),patient);
cy = evalfis(C(:,1:5),patient);
 
t_error = ty - T(:,6);
c_error = cy - C(:,6);
 
Mean_ABS_training_Error = mae(t_error)
Mean_ABS_Checking_Error = mae(c_error)
 
figure;
plot(ty,'b-o');hold on;
plot(T(:,6),'r -*');
grid on;
 
figure;
plot(cy,'b-o');hold on;
plot(C(:,6),'r -*');
grid on;
相关文章
|
1月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
175 80
|
19天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
11天前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
8天前
|
SQL Cloud Native API
NSDI'24 | 阿里云飞天洛神云网络论文解读——《Poseidon》揭秘新型超高性能云网络控制器
NSDI‘24于4月16-18日在美国加州圣塔克拉拉市举办,汇聚全球网络系统领域的专家。阿里云飞天洛神云网络的两篇论文入选,标志着其创新能力获广泛认可。其中,《Poseidon: A Consolidated Virtual Network Controller that Manages Millions of Tenants via Config Tree》介绍了波塞冬平台,该平台通过统一控制器架构、高性能配置计算引擎等技术,实现了对超大规模租户和设备的高效管理,显著提升了云网络性能与弹性。实验结果显示,波塞冬在启用EIP时的完成时间比Top 5厂商分别快1.8至55倍和2.6至4.8倍。
|
15天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PPO强化学习的buckboost升降压电路控制系统matlab仿真,对比PID控制器
本项目利用MATLAB 2022a对基于PPO强化学习的Buck-Boost电路控制系统进行仿真,完整代码无水印。通过与环境交互,智能体学习最优控制策略,实现输出电压稳定控制。训练过程包括初始化参数、收集经验数据、计算优势和奖励函数并更新参数。附带操作视频指导,方便用户理解和应用。
32 12
|
25天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
27天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
1月前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。

热门文章

最新文章