【心电信号检测】基于小波时间散射网络(WTSN)和长短期记忆网络 (LSTM)实现ECG信号分类附matlab代码

简介: 【心电信号检测】基于小波时间散射网络(WTSN)和长短期记忆网络 (LSTM)实现ECG信号分类附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

随着社会不断进步和生活压力的不断上升,心脏疾病已经成为威胁人类健康的重要因素.心电信号(ECG)表征了人体心脏的电活动,可以通过心电图直观展现出来,在心脏疾病发病前,心电信号中一般会出现相应的心律失常现象,因此,对心电信号进行识别分类研究,对心脏病的诊断和治疗具有重要的意义.由此许多专家和学者对心电信号的识别分类进行了大量研究.心电信号的识别分类通常包括心电信号采集,心电信号预处理,提取心电特征,设计识别分类器等步骤.心电信号常含干扰噪声,噪声的存在会影响后期心电信号特征点R波峰的准确检测,并影响对心电信号识别分类率,故心电信号的预处理是心电信号识别分类的关键步骤。本文基于小波时间散射网络(WTSN)和长短期记忆网络 (LSTM)实现ECG信号分类。

⛄ 部分代码

clear

close all

clc

load(fullfile(pwd, "ECGData.mat"))

Fs = 128;

unique(ECGData.Labels)

M = size(ECGData.Data, 1);

idxsel = randperm(M, 4);

tiledlayout(2, 2, "Padding", "compact")


for numplot = 1:4

   nexttile

   plot(ECGData.Data(idxsel(numplot),1:3000))

   ylabel('Volts')

   xlabel('Samples')

   title(string(ECGData.Labels(idxsel(numplot))))

end


sampleSig = ECGData.Data(1,:);

sf = waveletScattering('SignalLength',numel(sampleSig),'SamplingFrequency',Fs)

feat = featureMatrix(sf,sampleSig);

lev = 1;

[S1,U1] = scatteringTransform(sf,ECGData.Data(find(ECGData.Labels=="ARR",1),:));

if true

   netScat = trainNetwork(scat_features_train,YTrain,layers,options);

else

   load(fullfile(pwd, "data", "netScat.mat"))

end


YTest = categorical(testLabels);


YPred = classify(netScat,scat_features_test, 'MiniBatchSize',miniBatchSize, 'SequenceLength','shortest');

accuracy = round((sum(YPred == YTest)./numel(YTest))*100);


confusionchart(YTest, YPred, "RowSummary", "row-normalized");

title("Accuracy: " + accuracy + "%")

⛄ 运行结果

⛄ 参考文献

[1] 袁丹阳. 基于小波包和神经网络的心电信号分类方法研究[D]. 天津工业大学, 2017.

[2] 张杨. 基于小波分析的ECG信号检测[D]. 厦门大学, 2007.

[3] 徐一轩, 伍卫国, 王思敏,等. 基于长短期记忆网络(LSTM)的数据中心温度预测算法[J]. 计算机技术与发展, 2019, 29(12):7.

[4] 岑小林, 胡佳宗, 陈援峰. 基于Matlab的小波提升与心电信号R波检测[J]. 数字技术与应用, 2014(6):2.

[5] 丁兴号, 邓善熙, 赵前程. 基于小波和神经网络的动态心电波形分类新方法[J]. 生物物理学报, 2003, 19(1):5.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
1天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
2月前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
4月前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
17天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
58 17
|
27天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
28天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
47 10
|
30天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
59 10