【微电网优化】基于改进粒子群算法的微网多目标优化调度附matlab代码

简介: 【微电网优化】基于改进粒子群算法的微网多目标优化调度附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

微电网优化调度作为智能电网优化的重要组成部分,对降低能耗,环境污染具有重要意义.微电网的发展目标既要满足电力供应的基本需求,又要提高经济效益和环境保护.对此,提出了一种综合考虑微电网系统运行成本和环境保护成本的并网模式下微电网多目标优化调度模型.同时采用改进的粒子群算法对优化模型进行求解.仿真结果表明,该模型可以有效降低用户的用电成本和环境污染,促进微电网的优化运行,并验证了改进的粒子群算法的优越性能.

⛄ 部分代码

%%存档库(储藏室)作用:存档,用来储存过去产生的非支配解

%这里的程序尽量不要动,直接套用即可

classdef Repository %储藏室

   properties

       swarm

       rep_size

       Grid

       grid_size

       alpha

       beta

       gamma

   end

   

   methods

       function obj = Repository(swarm,rep_size,grid_size,alpha,beta,gamma) %存档库

           if nargin>0

               obj.rep_size = rep_size;

               swarm = Particle.updateDomination(swarm);

               obj.swarm = swarm(~[swarm.isDominated]);

               obj.grid_size=grid_size;

               obj.alpha=alpha;

               obj.beta = beta;

               obj.gamma = gamma;

               obj.Grid=obj.grid();

               for i = 1:length(obj.swarm)

                   obj.swarm(i) = obj.swarm(i).updateGridIndex(obj.Grid);

               end

           end

       end

       function Grid = grid(obj) %更新网格

           C = vertcat(obj.swarm.cost);

           cmin = min(C,[],1);

           cmax = max(C,[],1);

           dc = cmax - cmin;

           cmin = cmin - obj.alpha * dc;

           cmax = cmax + obj.alpha * dc;

           nObj = size(C,2);

           empty_grid.LB = [];

           empty_grid.UB = [];

           Grid = repmat(empty_grid,nObj,1);

           for j = 1:nObj

               cj = linspace(cmin(j),cmax(j),obj.grid_size+1);

               Grid(j).LB = [-inf, cj];

               Grid(j).UB = [cj, +inf];

           end

       end

       function leader = SelectLeader(obj) %选择领导者

           GI = [obj.swarm.GridIndex];

           OC = unique(GI);

           N = zeros(size(OC));

           for k = 1:length(OC)

               N(k) = length(find(GI==OC(k)));

           end

           P = exp(-obj.beta*N);

           P = P/sum(P);

           sci = Repository.RouletteWheelSelection(P);

           sc = OC(sci);

           SCM = find(GI==sc);

           smi = randi([1 length(SCM)]);

           sm = SCM(smi);

           leader = obj.swarm(sm);

       end

       function obj = DeleteOneRepMemebr(obj) %删除一个存档库的成员

           GI=[obj.swarm.GridIndex];

           OC=unique(GI);

           N=zeros(size(OC));

           for k=1:length(OC)

               N(k)=length(find(GI==OC(k)));

           end

           P=exp(obj.gamma*N);

           P=P/sum(P);

           sci=Repository.RouletteWheelSelection(P);

           sc=OC(sci);

           SCM=find(GI==sc);

           smi=randi([1 length(SCM)]);

           sm=SCM(smi);

           obj.swarm(sm)=[];

       end

       function obj = update(obj,swarm)  %更新

           swarm = Particle.updateDomination(swarm);

           obj.swarm = [obj.swarm,swarm(~[swarm.isDominated])];

           obj.swarm = Particle.updateDomination(obj.swarm);

           obj.swarm = obj.swarm(~[obj.swarm.isDominated]);

           obj.Grid=obj.grid();

           for i = 1:length(obj.swarm)

               obj.swarm(i) = obj.swarm(i).updateGridIndex(obj.Grid);

           end

           Extra=length(obj.swarm)-obj.rep_size;

           for e=1:Extra

               obj=obj.DeleteOneRepMemebr();

           end

       end

   end

   methods (Static)

       function i = RouletteWheelSelection(P) %轮盘赌筛选进行删除

           i = find(rand<=cumsum(P),1,'first');

       end

   end

end


⛄ 运行结果

⛄ 参考文献

[1] 陈深, 肖俊阳, 黄玉程,等. 基于改进量子粒子群算法的微网多目标优化调度[J]. 电力科学与技术学报, 2015, 30(2):7.

[2] 刘强. 基于改进粒子群算法多目标多微网经济优化调度[D]. 中国矿业大学, 2020.

[3] 杨健. 基于改进粒子群算法的微网实时能量优化调度[D]. 南京邮电大学.

[4] 程宇旭. 基于改进粒子群算法的微电网能量优化调度研究及实现[D]. 中南大学, 2014.

[5] 李兴莘, 张靖, 何宇,等. 基于改进粒子群算法的微电网多目标优化调度[J]. 电力科学与工程, 2021, 37(3):7.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
6天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
14天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
20天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
20天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
21小时前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
226 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
142 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章