m分别使用BP神经网络和GRNN网络进行时间序列预测matlab仿真

简介: m分别使用BP神经网络和GRNN网络进行时间序列预测matlab仿真

1.算法描述

    广义回归神经网络是径向基神经网络的一种,GRNN具有很强的非线性映射能力和学习速度,比RBF具有更强的优势,网络最后普收敛于样本量集聚较多的优化回归,样本数据少时,预测效果很好,还可以处理不稳定数据。虽然GRNN看起来没有径向基精准,但实际在分类和拟合上,特别是数据精准度比较差的时候有着很大的优势。

   GRNN是RBF的一种改进,结构相似。区别就在于多了一层求和层,而去掉了隐含层与输出层的权值连接(对高斯权值的最小二乘叠加)。

86ded1c091beb4987fc9891f53bbbd0e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

1.输入层为向量,维度为m,样本个数为n,线性函数为传输函数。

2.隐藏层与输入层全连接,层内无连接,隐藏层神经元个数与样本个数相等,也就是n,传输函数为径向基函数。

3.加和层中有两个节点,第一个节点为每个隐含层节点的输出和,第二个节点为预期的结果与每个隐含层节点的加权和。

4.输出层输出是第二个节点除以第一个节点。

    在GRNN神经网络中,一旦确立了学习样本数据后,只需要调整一个参数“光滑因子”即可确定其网络结构和权值,因此训练GRNN网络要比传统的神经网络更加便捷。所以选择GRNN。

————————————————

   BP神经网络的网络层包括输入层,隐含层和输出层三个网络层次,其基本结构如下图所示: 

aa692a278ad320c09ab98af5de76f77c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

基于三层网络结构的BP神经网络具有较为广泛的应用场合和训练效果。

    在BP神经网络中,隐含层数量对神经网络的性能有着至关重要的影响,如果隐含层数量过多,会大大增加BP神经网络的内部结构的复杂度,从而降低学习效率,增加训练时间;如果隐含层数量过少,则无法精确获得训练输入数据和输出结果之间的内在规律,增加预测误差。因此,选择合适的隐含层个数具有十分重要的意义。由于隐含层个数的设置没有明确的理论可以计算,通常情况下,采用逐次分析的方法获得,即通过对不同隐含层所对应的神经网络进行预测误差的仿真分析,选择误差最小情况下所对应的隐含层个数。

    学习率,即网络权值得更新速度,当学习率较大的时候,网络权值的更新速度快,当网络稳定性会下降;当学习率较小的时候,网络权值的更新速度慢,网络较为稳定。这里选择BP神经网络的学习率方式参考上一章节隐含层的选择方式,即通过对比不同学习率的网络训练误差,选择性能较优的学习率。

   BP神经网络的初始网络权值对网络训练的效率以及预测性能有着较大的影响,通常情况下,采用随机生成[-1,1]之间的随机数作为BP神经网络的初始权值。

————————————————

2.仿真效果预览
matlab2022a仿真结果如下:

e9ed27ae831d221cbdd9c567391b7e18_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
7eeab723dec109b34d1d343dbf95fa41_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

可以看到,蓝色的是原始的数据,红色的我们的预测输出,前面几个年份,由于有已知数据,所以可以对比,可以看到,BP神经网络会存在的一定的误差。而GRNN则误差非常小。

误差具体数值,新改的程序有输出的,结果如下:

BP:

aba6261aeccd218ec4276dfb90d10226_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

GRNN:

06e2cda5117aa0b358da253514b2d9ca_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

因此,通过上述过程可知,GRNN神经网络具有更好的预测结果。

3.MATLAB核心程序

 
%GRNN神经网络训练
char    = [D]';
T       = [SAFE];
Net     = newgrnn(char,T,25);
save Grnn.mat Net;
 
%%
%通过拟合的方法,得到未来的指标的数据
X0=Time';
%设置预测年份
X1=[Time,2016,2017,2018,2019,2020];
 
Y1=D(:,1);
Y2=D(:,2);
Y3=D(:,3);
Y4=D(:,4);
Y5=D(:,5);
Y6=D(:,6);
Y7=D(:,7);
Y8=D(:,8);
Y9=D(:,9);
Y10=D(:,10);
Y11=D(:,11);
Y12=D(:,12);
Y13=D(:,13);
Y14=D(:,14);
Y15=D(:,15);
 
%开始拟合
p=polyfit(X0,Y1,5);Y1_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);
p=polyfit(X0,Y2,5);Y2_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);
p=polyfit(X0,Y3,5);Y3_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);
p=polyfit(X0,Y4,5);Y4_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);
 
p=polyfit(X0,Y5,5);Y5_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y6,5);Y6_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y7,5);Y7_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y8,5);Y8_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
 
p=polyfit(X0,Y9,5);Y9_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y10,5);Y10_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y11,5);Y11_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y12,5);Y12_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
 
p=polyfit(X0,Y13,5);Y13_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y14,5);Y14_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y15,5);Y15_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
 
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
53 31
|
16天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
2天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
4月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
63 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
4月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
68 0

热门文章

最新文章