基于MCMC的交通量逆建模(Matlab代码实现)

简介: 基于MCMC的交通量逆建模(Matlab代码实现)

🍁🥬🕒摘要🕒🥬🍁

马尔科夫链蒙特卡洛方法(Markov Chain Monte Carlo),简称MCMC,产生于20世纪50年代早期,是在贝叶斯理论框架下,通过计算机进行模拟的蒙特卡洛方法(Monte Carlo)。该方法将马尔科夫(Markov)过程引入到Monte Carlo模拟中,实现抽样分布随模拟的进行而改变的动态模拟,弥补了传统的蒙特卡罗积分只能静态模拟的缺陷。MCMC是一种简单有效的计算方法,在很多领域得到广泛的应用,如统计物、贝叶斯(Bayes)问题、计算机问题等。


✨🔎⚡运行结果⚡🔎✨

 

💂♨️👨‍🎓Matlab代码👨‍🎓♨️💂

%this code simulates the true state 
%used in the article simulations. It models the vehicle trajectories
%using the algorithm 2 in the article
close all
clear all
%set true state
deltaT=2/3600;
vmax=77;
rhomax=[180*5,170*4,160*5];
wf=16;
vmaxForMesh=80;
deltaX=deltaT*vmaxForMesh;
domainLengthInmiles=2;
numCells=domainLengthInmiles/deltaX;
timeSteps=500
vInitial=77*ones(numCells,1);
%% plot boundary conditions
figure
vUpstream=62*ones(timeSteps+1,1);
vUpstream(50:end-300)=45;
vDownstream=15*ones(timeSteps+1,1);
vDownstream(1:40)=58;
vDownstream(220:400)=58;
timeDisc=(0:deltaT:timeSteps*deltaT);
plot(timeDisc*60,vUpstream,'k -')
hold on
 plot(timeDisc*60,vDownstream,'k --')
ylabel('\it v')
xlabel('\it t')
 %legend('upstream','downstream')
set(gca,'Ylim',[0 70])
set(gcf, 'PaperUnits', 'inches');
papersize=[3 3];
set(gcf, 'PaperSize',papersize);
width=2.5;
height=2.5;
left=(papersize(1)-width)/2;
bottom=(papersize(2)-height)/2;
myfiguresize = [left,bottom,width,height];
set(gcf, 'PaperPosition', myfiguresize);
print('-dpsc2','figs/trueBoundaryConditions.eps')
system('epstopdf figs/trueBoundaryConditions.eps')
%axis tight
%% simulate v-field with CFL=0.5
numLanes=1*ones(size(vInitial));
numLanes(15:25)=1;
numLanes=[numLanes(1);numLanes;numLanes(end)];
dropLocation=(15:25);
rhoMaxVec=zeros(numCells,1);
    rhoMaxVec(dropLocation)=rhomax(2);
    rhoMaxVec(1:dropLocation(1)-1)=rhomax(1);
   rhoMaxVec(dropLocation(end)+1:end)=rhomax(3);
rhoMaxVec=[rhoMaxVec(1);rhoMaxVec;rhoMaxVec(end)];
rhoCritVec=rhoMaxVec.*(wf/vmax);
vupdated=updatevHalfCFL(vInitial,deltaX,deltaT,timeSteps,vDownstream,vUpstream,rhoCritVec,vmax,wf*ones(numCells+2,1),rhoMaxVec,numLanes);


📜📢🌈参考文献🌈📢📜

[1]刘贞. 基于MCMC算法的回归变点模型的贝叶斯分析[D].新疆师范大学,2021.DOI:10.27432/d.cnki.gxsfu.2021.000412.

相关文章
空心电抗器的matlab建模与性能仿真分析
空心电抗器是一种无铁芯的电感元件,通过多层并联导线绕制而成。其主要作用是限制电流、滤波、吸收谐波和提高功率因数。电抗器的损耗包括涡流损耗、电阻损耗和环流损耗。涡流损耗由交变磁场引起,电阻损耗与电抗器半径有关,环流损耗与各层电流相关。系统仿真使用MATLAB2022a进行。
|
23天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
1月前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
226 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
142 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
5月前
|
监控
基于偏微分方程离散化计算的地下换热器建模与温度检测matlab仿真
**摘要:** 探索地下换热器的建模与温度检测,使用MATLAB2022a进行系统仿真,关注传热过程的热传导、对流和辐射。通过离散化偏微分方程建立数值模型,模拟温度场,考虑地质特性和水流影响。建模以网格单元描述温度变化,采用热电偶、红外和光纤测温技术验证模型并监控温度,各具优缺点。光纤测温法提供高精度和抗干扰的分布式监测。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于负相关误差函数的4集成BP神经网络matlab建模与仿真
**算法预览:** 图像显示无水印的2022a版MATLAB运行结果 **软件版本:** MATLAB 2022a **核心代码片段:** 省略展示 **理论概述:** NCL集成BP网络利用负相关提升泛化,结合多个弱模型减少错误关联。通过λ参数控制模型间负相关程度,λ>0增强集成效果,提高预测准确性和系统稳健性。
|
4月前
|
算法
基于matlab的风力发电系统建模与详细性能仿真分析
本研究介绍风力发电原理与系统模型,使用MATLAB 2022a进行性能仿真。风力通过风轮转化为电能,涉及贝努利定理及叶素理论。仿真展示了风速与输出功率间的关系,包括风电利用系数、切入切出控制与MPPT控制效果。当风速超过25m/s时,系统自动停机保护设备。MPPT算法确保了在变化风速下获得最大功率。
车辆行驶控制运动学模型的matlab建模与仿真,仿真输出车辆动态行驶过程
该课题在MATLAB2022a中建立了车辆行驶控制运动学模型并进行仿真,展示车辆动态行驶过程。系统仿真结果包含四张图像,显示了车辆在不同时间点的位置和轨迹。核心程序定义了车辆参数和初始条件,使用ode45求解器模拟车辆运动。车辆运动学模型基于几何学,研究车辆空间位姿、速度随时间变化,假设车辆在平面运动且轮胎无滑动。运动学方程描述位置、速度和加速度关系,模型预测控制用于优化轨迹跟踪,考虑道路曲率影响,提升弯道跟踪性能。

热门文章

最新文章