【BP时序预测】基于鲸鱼算法优化BP神经网络实现温度数据预测附matlab代码

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 【BP时序预测】基于鲸鱼算法优化BP神经网络实现温度数据预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

实时监控拱坝的温度对工程进度和坝体安全具有重要意义.以白莲崖碾压混凝土拱坝温度监测数据 为研究对象,建立基于MATLAB的拱坝温度监测WOA-BP神经网络预测模型,用原型观测数据对其进行校核和检验,并BP预测结果进行比较.结果证明,用WOA-BP人工神经网络建立坝体变形的神经网络模型对大坝变形能够进 行较高精度的预测,具有良好的应用前景.

⛄ 部分代码

function [Leader_pos,Leader_score, curve]=WOA(popsize,maxgen,dim,lb,ub,fitness)

%初始化位置向量和领导者得分

Leader_pos=zeros(1,dim);

Leader_score=10^20;  


%% 初始化种群

for i=1:dim

   ub_i=ub(i);

   lb_i=lb(i);

  Positions(:,i)=rand(popsize,1).*(ub_i-lb_i)+lb_i;

end

curve=zeros(maxgen,1);%初始化收敛曲线


%% 循环开始

h0=waitbar(0,'WOA optimization...');

for t=1:maxgen

   for i=1:size(Positions,1)%对每个个体一个一个检查是否越界

       %对每个个体一个一个检查是否越界

       % 返回超出搜索空间边界的搜索代理

       Flag4ub=Positions(i,:)>ub;

       Flag4lb=Positions(i,:)<lb;

       Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;%超过最大值的设置成最大值,超过最小值的设置成最小值

       %目标函数值的计算

       fit(i)=fitness( Positions(i,:));

       

       % 更新领导者位置

       if fit(i)<Leader_score

           Leader_score=fit(i);

           Leader_pos=Positions(i,:);

       end

   end

   

   a=2-t*((2)/maxgen);

   a2=-1+t*((-1)/maxgen);

   %参数更新

   for i=1:size(Positions,1)

       r1=rand();r2=rand();

       A=2*a*r1-a;

       C=2*r2;

     

       b=1;

       l=(a2-1)*rand+1;

       

       p = rand();

       

       for j=1:size(Positions,2)%对每一个个体地多维度进行循环运算

           %收缩包围机制

           if p<0.5

               if abs(A)>=1

                   rand_leader_index = floor(popsize*rand()+1);%floor将 X 的每个元素四舍五入到小于或等于该元素的最接近整数

                   X_rand = Positions(rand_leader_index, :);

                   D_X_rand=abs(C*X_rand(j)-Positions(i,j));

                   Positions(i,j)=X_rand(j)-A*D_X_rand;

               elseif abs(A)<1

                   D_Leader=abs(C*Leader_pos(j)-Positions(i,j));

                   Positions(i,j)=Leader_pos(j)-A*D_Leader;

               end

               %螺旋更新位置

           elseif p>=0.5

               distance2Leader=abs(Leader_pos(j)-Positions(i,j));

               Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);

           end

       end

   end

   curve(t)=Leader_score;

   waitbar(t/maxgen,h0)

end

close(h0)

setdemorandstream(pi);

⛄ 运行结果

⛄ 参考文献

[1] 秦焕瀛, 齐辉, 彭金辉,等. 基于BP神经网络的拱坝温度监测数据预测模型[J]. 水电与抽水蓄能, 2011, 35(001):57-59.

[2] 肖雄. PSO优化BP神经网络岩爆预测的Matlab实现[J]. 中国房地产业, 2018(17):1.

[3] 郭利进, 乔志忠. 基于遗传算法优化BP神经网络的粮食温度预测研究[J]. 粮食与油脂, 2023, 36(1):5.

[4] 戴宝赋. 基于BP神经网络的光伏发电量预测算法研究及实现.


⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
4天前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
11天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
9天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
39 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
21天前
|
存储 编解码 负载均衡
数据分片算法
【10月更文挑战第25天】不同的数据分片算法适用于不同的应用场景和数据特点,在实际应用中,需要根据具体的业务需求、数据分布情况、系统性能要求等因素综合考虑,选择合适的数据分片算法,以实现数据的高效存储、查询和处理。
|
23天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
25 3
|
21天前
|
存储 缓存 算法
分布式缓存有哪些常用的数据分片算法?
【10月更文挑战第25天】在实际应用中,需要根据具体的业务需求、数据特征以及系统的可扩展性要求等因素综合考虑,选择合适的数据分片算法,以实现分布式缓存的高效运行和数据的合理分布。
|
22天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
26天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
28天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
26天前
|
存储 JSON 算法
TDengine 检测数据最佳压缩算法工具,助你一键找出最优压缩方案
在使用 TDengine 存储时序数据时,压缩数据以节省磁盘空间是至关重要的。TDengine 支持用户根据自身数据特性灵活指定压缩算法,从而实现更高效的存储。然而,如何选择最合适的压缩算法,才能最大限度地降低存储开销?为了解决这一问题,我们特别推出了一个实用工具,帮助用户快速判断并选择最适合其数据特征的压缩算法。
31 0

热门文章

最新文章