m基于GA遗传优化BP神经网络的传感器故障诊断matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: m基于GA遗传优化BP神经网络的传感器故障诊断matlab仿真

1.算法描述

  遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉,变异过程产生更适应环境的新一代“染色体”群。这样,一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解。

   其主要步骤如下:

1.初始化

   选择一个群体,即选择一个串或个体的集合bi,i=1,2,...n。这个初始的群体也就是问题假设解的集合。一般取n=30-160。

   通常以随机方法产生串或个体的集合bi,i=1,2,...n。问题的最优解将通过这些初始假设解进化而求出。

2.选择

  根据适者生存原则选择下一代的个体。在选择时,以适应度为选择原则。适应度准则体现了适者生存,不适应者淘汰的自然法则。

给出目标函数f,则f(bi)称为个体bi的适应度。以

为选中bi为下一代个体的次数。

显然.从式(3—86)可知:

(1)适应度较高的个体,繁殖下一代的数目较多。

(2)适应度较小的个体,繁殖下一代的数目较少;甚至被淘汰。

这样,就产生了对环境适应能力较强的后代。对于问题求解角度来讲,就是选择出和最优解较接近的中间解。

3.交叉

   对于选中用于繁殖下一代的个体,随机地选择两个个体的相同位置,按交叉概率P。在选中的位置实行交换。这个过程反映了随机信息交换;目的在于产生新的基因组合,也即产生新的个体。交叉时,可实行单点交叉或多点交叉。

f64784012fe0054d44633c7571c2ee6e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

在BP神经网络中,隐含层数量对神经网络的性能有着至关重要的影响,如果隐含层数量过多,会大大增加BP神经网络的内部结构的复杂度,从而降低学习效率,增加训练时间;如果隐含层数量过少,则无法精确获得训练输入数据和输出结果之间的内在规律,增加预测误差。因此,选择合适的隐含层个数具有十分重要的意义。由于隐含层个数的设置没有明确的理论可以计算,通常情况下,采用逐次分析的方法获得,即通过对不同隐含层所对应的神经网络进行预测误差的仿真分析,选择误差最小情况下所对应的隐含层个数。

    学习率,即网络权值得更新速度,当学习率较大的时候,网络权值的更新速度快,当网络稳定性会下降;当学习率较小的时候,网络权值的更新速度慢,网络较为稳定。这里选择BP神经网络的学习率方式参考上一章节隐含层的选择方式,即通过对比不同学习率的网络训练误差,选择性能较优的学习率。

   BP神经网络的初始网络权值对网络训练的效率以及预测性能有着较大的影响,通常情况下,采用随机生成[-1,1]之间的随机数作为BP神经网络的初始权值。     

   利用遗传算法来优化 BP 神经网络,利用它来学习神经网络 的权值,并在自适应遗传算法的基础上改进遗传算 子,根据适应度变化调节交叉率和变异率,并利用遗 传算法的全局搜索能力对BP 神经网络的初始权重进 行自适应调整,最终得到一个优化的 BP 神经网络.

2.仿真效果预览
matlab2022a仿真结果如下:

ab3de4ec03b69dba5c29088d9c4e892d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
7920df547ed4c795912a70b6248f2273_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
eef2bd5990161cf8442b61c26598de0c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
8d1677ebe447e5d1de769c834d883733_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

fit_best  = [];                     
fit_chrom = [];                       
%最好染色体
[fit_best,ind_best] = min(gts.fitness);
fit_chrom           = gts.chrom(ind_best,:);  
fit_mean            = sum(gts.fitness)/Pop_Size; 
 
Fitness_line        = zeros(1,Max_G);
 
for i=1:Max_G
    i
    if i == 1
       P1s = P1*ones(1,Pop_Size);
       P2s = P2*ones(1,Pop_Size);;
    else
       fmax = max(gts.fitness);
       f_   = mean(gts.fitness);
       f    = gts.fitness;
       for j = 1:Pop_Size;
           if f(j) >= f_
              P1s(j) = 0.5*(fmax-f(j))/(fmax-f_);  
           else
              P1s(j) = 0.5;   
           end
       end
       for j = 1:Pop_Size;
           P2s(j) = 1-P1s(j);  
       end 
    end
    
    
    %遗传选择
    gts       = func_select(gts,Pop_Size); 
    fit_mean  = sum(gts.fitness)/Pop_Size;
    %遗传交叉
    gts.chrom = func_cross(P1s,Lroms,gts.chrom,Pop_Size,bound);
    %变异
    gts.chrom = func_mutation(P2s,Lroms,gts.chrom,Pop_Size,i,Max_G,bound);
    %计算适应度 
    for j=1:Pop_Size
        Xx             = gts.chrom(j,:);
        gts.fitness(j) = func_fitness(Xx,Num_In,Num_Hidden,Num_Out,net,train_data,train_aim);   
    end
    [fit_best2,ind_best2] = min(gts.fitness);
    [fit_worst,ind_worst] = max(gts.fitness);
 
    if fit_best > fit_best2
       fit_best  = fit_best2;
       fit_chrom = gts.chrom(ind_best2,:);
    end
    gts.chrom(ind_worst,:) = fit_chrom;
    gts.fitness(ind_worst) = fit_best;
    fit_mean               = sum(gts.fitness)/Pop_Size;
    Fitness_line(i)        = fit_best;
end
Xx=fit_chrom;
 
 
 
%把最优初始阀值权值赋予网络预测
L1 = 1;
L2 = Num_In*Num_Hidden;
w1 = Xx(L1:L2);
 
L1 = Num_In*Num_Hidden+1;
L2 = Num_In*Num_Hidden+Num_Hidden;
B1 = Xx(L1:L2);
 
L1 = Num_In*Num_Hidden+Num_Hidden+1;
L2 = Num_In*Num_Hidden+Num_Hidden+Num_Hidden*Num_Out;
w2 = Xx(L1:L2);
 
L1 = Num_In*Num_Hidden+Num_Hidden+Num_Hidden*Num_Out+1;
L2 = Num_In*Num_Hidden+Num_Hidden+Num_Hidden*Num_Out+Num_Out;
B2 = Xx(L1:L2);
 
 
net.iw{1,1}=reshape(w1,Num_Hidden,Num_In);
net.lw{2,1}=reshape(w2,Num_Out,Num_Hidden);
net.b{1}=reshape(B1,Num_Hidden,1);
net.b{2}=B2;
clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')
 
 
load data.mat
Num_In     = size(Train_data,1);
Num_Hidden = 6;
Num_Out    = 1;
%构建BP网络
net        = newff(Train_data,Train_aim,Num_Hidden);
net        = func_newGA(net,Num_In,Num_Hidden,Num_Out,Train_data,Train_aim);
net        = train(net,Train_data,Train_aim);
outputs    = round(sim(net,awgn(Test_data,0,'measured')));%测试的时候,加入随机干扰
 
%计算整体识别率
disp('整体识别率:');
C0 = 100*length(find(outputs==Test_aim))/length(Test_aim)
disp('第1种故障识别率:');
C1 = 100*length(find(outputs(1:50)==1))/length(Test_aim)*3
disp('第2种故障识别率:');
C2 = 100*length(find(outputs(51:100)==2))/length(Test_aim)*3
disp('第3种故障识别率:');
C3 = 100*length(find(outputs(101:150)==3))/length(Test_aim)*3
 
 
%测试不同噪声大小下的识别率
SNR = -2:1:16;
for i = 1:length(SNR)
    i
    for j = 1:20
        rng(j);
        Test_data2 = awgn(Test_data,SNR(i),'measured');
        outputs    = round(sim(net,Test_data2));
        C20(i,j)     = 100*length(find(outputs==Test_aim))/length(Test_aim);
        C21(i,j)     = 100*length(find(outputs(1:50)==1))/length(Test_aim)*3;    
        C22(i,j)     = 100*length(find(outputs(51:100)==2))/length(Test_aim)*3;    
        C23(i,j)     = 100*length(find(outputs(101:150)==3))/length(Test_aim)*3; 
    end
end
相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
36 2
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
1月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。

热门文章

最新文章