m基于GA遗传优化BP神经网络的传感器故障诊断matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: m基于GA遗传优化BP神经网络的传感器故障诊断matlab仿真

1.算法描述

  遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串。并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解。然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉,变异过程产生更适应环境的新一代“染色体”群。这样,一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解。

   其主要步骤如下:

1.初始化

   选择一个群体,即选择一个串或个体的集合bi,i=1,2,...n。这个初始的群体也就是问题假设解的集合。一般取n=30-160。

   通常以随机方法产生串或个体的集合bi,i=1,2,...n。问题的最优解将通过这些初始假设解进化而求出。

2.选择

  根据适者生存原则选择下一代的个体。在选择时,以适应度为选择原则。适应度准则体现了适者生存,不适应者淘汰的自然法则。

给出目标函数f,则f(bi)称为个体bi的适应度。以

为选中bi为下一代个体的次数。

显然.从式(3—86)可知:

(1)适应度较高的个体,繁殖下一代的数目较多。

(2)适应度较小的个体,繁殖下一代的数目较少;甚至被淘汰。

这样,就产生了对环境适应能力较强的后代。对于问题求解角度来讲,就是选择出和最优解较接近的中间解。

3.交叉

   对于选中用于繁殖下一代的个体,随机地选择两个个体的相同位置,按交叉概率P。在选中的位置实行交换。这个过程反映了随机信息交换;目的在于产生新的基因组合,也即产生新的个体。交叉时,可实行单点交叉或多点交叉。

f64784012fe0054d44633c7571c2ee6e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

在BP神经网络中,隐含层数量对神经网络的性能有着至关重要的影响,如果隐含层数量过多,会大大增加BP神经网络的内部结构的复杂度,从而降低学习效率,增加训练时间;如果隐含层数量过少,则无法精确获得训练输入数据和输出结果之间的内在规律,增加预测误差。因此,选择合适的隐含层个数具有十分重要的意义。由于隐含层个数的设置没有明确的理论可以计算,通常情况下,采用逐次分析的方法获得,即通过对不同隐含层所对应的神经网络进行预测误差的仿真分析,选择误差最小情况下所对应的隐含层个数。

    学习率,即网络权值得更新速度,当学习率较大的时候,网络权值的更新速度快,当网络稳定性会下降;当学习率较小的时候,网络权值的更新速度慢,网络较为稳定。这里选择BP神经网络的学习率方式参考上一章节隐含层的选择方式,即通过对比不同学习率的网络训练误差,选择性能较优的学习率。

   BP神经网络的初始网络权值对网络训练的效率以及预测性能有着较大的影响,通常情况下,采用随机生成[-1,1]之间的随机数作为BP神经网络的初始权值。     

   利用遗传算法来优化 BP 神经网络,利用它来学习神经网络 的权值,并在自适应遗传算法的基础上改进遗传算 子,根据适应度变化调节交叉率和变异率,并利用遗 传算法的全局搜索能力对BP 神经网络的初始权重进 行自适应调整,最终得到一个优化的 BP 神经网络.

2.仿真效果预览
matlab2022a仿真结果如下:

ab3de4ec03b69dba5c29088d9c4e892d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
7920df547ed4c795912a70b6248f2273_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
eef2bd5990161cf8442b61c26598de0c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
8d1677ebe447e5d1de769c834d883733_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

fit_best  = [];                     
fit_chrom = [];                       
%最好染色体
[fit_best,ind_best] = min(gts.fitness);
fit_chrom           = gts.chrom(ind_best,:);  
fit_mean            = sum(gts.fitness)/Pop_Size; 
 
Fitness_line        = zeros(1,Max_G);
 
for i=1:Max_G
    i
    if i == 1
       P1s = P1*ones(1,Pop_Size);
       P2s = P2*ones(1,Pop_Size);;
    else
       fmax = max(gts.fitness);
       f_   = mean(gts.fitness);
       f    = gts.fitness;
       for j = 1:Pop_Size;
           if f(j) >= f_
              P1s(j) = 0.5*(fmax-f(j))/(fmax-f_);  
           else
              P1s(j) = 0.5;   
           end
       end
       for j = 1:Pop_Size;
           P2s(j) = 1-P1s(j);  
       end 
    end
    
    
    %遗传选择
    gts       = func_select(gts,Pop_Size); 
    fit_mean  = sum(gts.fitness)/Pop_Size;
    %遗传交叉
    gts.chrom = func_cross(P1s,Lroms,gts.chrom,Pop_Size,bound);
    %变异
    gts.chrom = func_mutation(P2s,Lroms,gts.chrom,Pop_Size,i,Max_G,bound);
    %计算适应度 
    for j=1:Pop_Size
        Xx             = gts.chrom(j,:);
        gts.fitness(j) = func_fitness(Xx,Num_In,Num_Hidden,Num_Out,net,train_data,train_aim);   
    end
    [fit_best2,ind_best2] = min(gts.fitness);
    [fit_worst,ind_worst] = max(gts.fitness);
 
    if fit_best > fit_best2
       fit_best  = fit_best2;
       fit_chrom = gts.chrom(ind_best2,:);
    end
    gts.chrom(ind_worst,:) = fit_chrom;
    gts.fitness(ind_worst) = fit_best;
    fit_mean               = sum(gts.fitness)/Pop_Size;
    Fitness_line(i)        = fit_best;
end
Xx=fit_chrom;
 
 
 
%把最优初始阀值权值赋予网络预测
L1 = 1;
L2 = Num_In*Num_Hidden;
w1 = Xx(L1:L2);
 
L1 = Num_In*Num_Hidden+1;
L2 = Num_In*Num_Hidden+Num_Hidden;
B1 = Xx(L1:L2);
 
L1 = Num_In*Num_Hidden+Num_Hidden+1;
L2 = Num_In*Num_Hidden+Num_Hidden+Num_Hidden*Num_Out;
w2 = Xx(L1:L2);
 
L1 = Num_In*Num_Hidden+Num_Hidden+Num_Hidden*Num_Out+1;
L2 = Num_In*Num_Hidden+Num_Hidden+Num_Hidden*Num_Out+Num_Out;
B2 = Xx(L1:L2);
 
 
net.iw{1,1}=reshape(w1,Num_Hidden,Num_In);
net.lw{2,1}=reshape(w2,Num_Out,Num_Hidden);
net.b{1}=reshape(B1,Num_Hidden,1);
net.b{2}=B2;
clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')
 
 
load data.mat
Num_In     = size(Train_data,1);
Num_Hidden = 6;
Num_Out    = 1;
%构建BP网络
net        = newff(Train_data,Train_aim,Num_Hidden);
net        = func_newGA(net,Num_In,Num_Hidden,Num_Out,Train_data,Train_aim);
net        = train(net,Train_data,Train_aim);
outputs    = round(sim(net,awgn(Test_data,0,'measured')));%测试的时候,加入随机干扰
 
%计算整体识别率
disp('整体识别率:');
C0 = 100*length(find(outputs==Test_aim))/length(Test_aim)
disp('第1种故障识别率:');
C1 = 100*length(find(outputs(1:50)==1))/length(Test_aim)*3
disp('第2种故障识别率:');
C2 = 100*length(find(outputs(51:100)==2))/length(Test_aim)*3
disp('第3种故障识别率:');
C3 = 100*length(find(outputs(101:150)==3))/length(Test_aim)*3
 
 
%测试不同噪声大小下的识别率
SNR = -2:1:16;
for i = 1:length(SNR)
    i
    for j = 1:20
        rng(j);
        Test_data2 = awgn(Test_data,SNR(i),'measured');
        outputs    = round(sim(net,Test_data2));
        C20(i,j)     = 100*length(find(outputs==Test_aim))/length(Test_aim);
        C21(i,j)     = 100*length(find(outputs(1:50)==1))/length(Test_aim)*3;    
        C22(i,j)     = 100*length(find(outputs(51:100)==2))/length(Test_aim)*3;    
        C23(i,j)     = 100*length(find(outputs(101:150)==3))/length(Test_aim)*3; 
    end
end
相关文章
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
4天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
10天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
17天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
1月前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
170 15
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
3月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
5月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。
|
6月前
|
传感器 机器学习/深度学习 算法
基于GA遗传算法的WSN网络节点覆盖优化matlab仿真
本研究应用遗传优化算法于无线传感器网络(WSN),优化节点布局与数量,以最小化节点使用而最大化网络覆盖率。MATLAB2022a环境下,算法通过选择、交叉与变异操作,逐步改进节点配置,最终输出收敛曲线展现覆盖率、节点数及适应度值变化。无线传感器网络覆盖优化问题通过数学建模,结合遗传算法,实现目标区域有效覆盖与网络寿命延长。算法设计中,采用二进制编码表示节点状态,适应度函数考量覆盖率与连通性,通过选择、交叉和变异策略迭代优化,直至满足终止条件。