m基于5G毫米波场景Salen-Valenzula信道建模与matlab仿真

简介: m基于5G毫米波场景Salen-Valenzula信道建模与matlab仿真

1.算法描述

    随着通信技术的不断发展,现有的通信系统已经无法满足人们各个方面的需求,为了解决这个问题,5G通信技术应运而生。5G技术拥有更高的通信传输速率,更大的通信范围以及更高的频谱使用效率。5G通信技术的关键是毫米波技术,毫米波通信技术具有实时性强,传输距离远等优点。 

image.png

   在5G通信技术研究中,欧盟于2012年首先启动了METIS项目用于建立5G移动通信系统的统一标准。2012年欧盟的5G Public Private Partnership项目正式启动,标志着欧洲5G技术的研究达到了一个新的时代。2013年,韩国的三星集团开发了可商用化的5G通信技术,可以实现28GHz高频段上的数据高速通信。2014年,日本的NTT DoCoMo开始实测5G网络,测试结果表明5G系统的信号传输速率最高可以达到10Gbps。美国的4GAmericas也启动了5G通信技术的研究,同时展开了5G技术合作论坛。国内关于5G技术方面的研究,主要有华为,中兴等公司,并获得了较好的研究成果。

   在解决毫米波物理层相关问题的时候,总是不可避免地会碰到信道建模,而比较常见的毫米波信道模型就是S-V模型。基于毫米波的通信技术目前有着较为广泛的应用,如基于毫米波的地面通信和卫星通信。关于毫米波地面通信的研究成果主要包括,美国的Hughes公司与1976年研制了38GHz的双向通信系统,其最长通信距离可达39km。在1978年,日本OKI公司研究了一款基于毫米波技术的双向电话通信系统,并获得了较好的通信效果。在1981年,日本的YOKOSUKA公司开发了一款小型化的毫米波无线通信系统,其工作频段在26GHz。1988年,日本的Matsuhita公司首次研制了工作频段在50GHz的视频通信设备,并获得了较高的通信图像质量。而我国关于毫米波通信系统的研究,最早是1991开发的基于35GHz的铁路通信系统。

   由于大气中存在一定含量的极化氧分子和水汽,因此毫米波在传输过程中容易被大气吸收,从而导致信号衰减,影响通信质量[13,14]。根据相关研究发现,在一些特殊的频段,如60GHz、119GHz、183GHz,这种影响更为严重,在实际中应防止使用这些频段。而在其余一些频段,则通信性能较好,如35GHz、140GHz、220GHz等。图3.1给出了毫米波在不同频段大气衰减趋势图。

image.png

图1毫米波在不同频段大气衰减趋势图

从图1可知,H2O在22GHz,183GHz和340GHz等频段对毫米波影响较大,O2在60GHz、119GHz等频段对毫米波影响较大。因此,在实际应用过程中,应避免使用这些频段。根据上述介绍的毫米波传输特性,其适用于适用于各种人员密集且范围较小的区域中,通过5G网络强大的数据传输能力,极强的稳定性以及大范围的覆盖率给大数据时代带来了很多的好处,在部分建设好的地区可以时用户体验到10mbit/s以上的传输速率,通过网络给社会发展与人们提供保障。

    由于受到毫米波通信传播范围的限制,目前为止,毫米波通信技术主要被用在室内、城市微蜂窝等各种小范围高密度区域[16,17]。在确定应用场合之后,则需要建立相应的大尺度传播模型和小尺度传播模型。其中大尺度模型反应了接收信号强度随着传输距离变换的情况,小尺度模型则反映了由于环境散射造成的多径效应的影响。

   S-V的双指数模型可以充分灵活的反应出毫米波信道特征,其中,簇内的每一个径都服从瑞利分布。因此,S-V信道模型的冲击响应可以表示为: 

image.png
image.png

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png
image.png

3.MATLAB核心程序

clear;
close all;
warning off;
addpath 'func\'
 
rng('default');
rng(1);
b002   = 1;   
N      = 1000 ; 
Lam    = 0.025; 
lambda = 2.5;
Gam    = 7.4; 
gamma  = 4.3;
sigma_x= 3;  
 
 
 
t1=0:300; 
p_cluster=Lam*exp(-Lam*t1);  
h_cluster=exprnd(1/Lam,1,N);                                                  
[n_cluster x_cluster]=hist(h_cluster,25);  
figure;
plot(t1,p_cluster,'b'), 
hold on
plot(x_cluster,n_cluster*p_cluster(1)/n_cluster(1),'b:','linewidth',2); 
legend('Ideal','Simulation')
title(['簇达达到时间分布, \Lambda=', num2str(Lam)])
xlabel('T_m-T_{m-1} [ns]')
ylabel('p(T_m|T_{m-1})')
 
 
 
t2=0:0.01:5; 
p_ray=lambda*exp(-lambda*t2); 
h_ray=exprnd(1/lambda,1,1000); 
[n_ray,x_ray]=hist(h_ray,25); 
 
figure;
plot(t2,p_ray,'b')
hold on
plot(x_ray,n_ray*p_ray(1)/n_ray(1),'b:','linewidth',2);    
legend('Ideal','Simulation')
title(['射线达到时间分布, \lambda=', num2str(lambda)])
xlabel('\tau_{r,m}-\tau_{(r-1),m} [ns]')
ylabel('p(\tau_{r,m}|\tau_{(r-1),m})')
 
 
figure;
[h,t,t0,np]= SV_channel(Lam,lambda,Gam,gamma,N,b002,sigma_x);
stem(t(1:np(1),1),abs(h(1:np(1),1)),'bo');
title('S-V模型冲击响应函数')
xlabel('延迟[ns]'), 
ylabel('幅度')
 
 
figure;
X=10.^(sigma_x*randn(1,N)./20);
[temp,x]=hist(20*log10(X),25);
plot(x,temp,'b-','linewidth',2), axis([-10 10 0 130])
title(['对数正态分布, \sigma_X=',num2str(sigma_x),'dB'])
xlabel('20*log10(X)[dB]'), 
ylabel('功率db')
01_166m
相关文章
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
52 31
空心电抗器的matlab建模与性能仿真分析
空心电抗器是一种无铁芯的电感元件,通过多层并联导线绕制而成。其主要作用是限制电流、滤波、吸收谐波和提高功率因数。电抗器的损耗包括涡流损耗、电阻损耗和环流损耗。涡流损耗由交变磁场引起,电阻损耗与电抗器半径有关,环流损耗与各层电流相关。系统仿真使用MATLAB2022a进行。
|
5天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
4天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
11天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
1月前
|
物联网 5G 智能硬件
介绍频段、带宽、频率、调制、解调等基础术语,以及Wi-Fi、蓝牙、ZigBee、UWB、LTE、5G等常见无线通信技术
在无线通信领域,专业术语是理解技术的关键。本文详细介绍了频段、带宽、频率、调制、解调等基础术语,以及Wi-Fi、蓝牙、ZigBee、UWB、LTE、5G等常见无线通信技术,还涵盖了信号传播、信道容量、信噪比等深入概念。通过本文,你将掌握无线技术的核心知识,成为半个无线专家。
87 4
|
1月前
|
传感器 监控 自动驾驶
|
1月前
|
边缘计算 物联网 5G
5G小基站技术:解决室内覆盖难题
【10月更文挑战第25天】
104 5
|
1月前
|
人工智能 运维 数据挖掘
跨界融合:AI与5G技术如何共同推动数字化转型
【10月更文挑战第29天】本文探讨了人工智能(AI)与第五代移动通信技术(5G)的结合如何推动数字化转型。通过高速、低延迟的5G网络和AI的数据分析能力,两者相辅相成,实现了智能化网络运维、增强网络功能和多行业的实际应用。文中提供了网络流量预测和故障预测的示例代码,展示了技术的实际应用潜力。
47 1
|
1月前
|
运维 安全 5G