【英文文本分类实战】之六——模型与训练-评估-测试

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 【英文文本分类实战】之六——模型与训练-评估-测试

·请参考本系列目录:【英文文本分类实战】之一——实战项目总览

·下载本实战项目资源:神经网络实现英文文本分类.zip(pytorch)

[1] 编写模型


   1、TextRNN

  参考论文《Recurrent Neural Network for Text Classification with Multi-Task Learning》提出的TextRNN模型,我们编写TextRNN模型,代码如下:

class Config(object):
    """配置参数"""
    def __init__(self, dataset, embedding):
        self.model_name = 'TextRNN'
        self.train_path = dataset + '/data/train.csv'                                # 训练集
        self.dev_path = dataset + '/data/dev.csv'                                    # 验证集
        self.test_path = dataset + '/data/test.csv'                                  # 测试集
        self.class_list = [x.strip() for x in open(
            dataset + '/data/class.txt', encoding='utf-8').readlines()]              # 类别名单
        self.vocab_path = dataset + '/data/vocab.pkl'                                # 词表
        self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt'        # 模型训练结果
        self.log_path = dataset + '/log/' + self.model_name
        self.embedding_pretrained = torch.tensor(
            np.load(dataset + '/data/' + embedding)["embeddings"].astype('float32'))\
            if embedding != 'random' else None                                       # 预训练词向量
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')   # 设备
        self.dropout = 0.5                                              # 随机失活 当num_layers=1,dropout是无用的
        self.require_improvement = 1000                                 # 若超过1000batch效果还没提升,则提前结束训练
        self.num_classes = len(self.class_list)                         # 类别数
        self.n_vocab = 0                                                # 词表大小,在运行时赋值
        self.num_epochs = 10                                            # epoch数
        self.batch_size = 128                                           # mini-batch大小
        self.pad_size = 14                                              # 每句话处理成的长度(短填长切)
        self.learning_rate = 1e-3                                       # 学习率
        self.embed = self.embedding_pretrained.size(1)\
            if self.embedding_pretrained is not None else 300           # 字向量维度, 若使用了预训练词向量,则维度统一
        self.hidden_size = 128                                          # lstm隐藏层
        self.num_layers = 2                                             # lstm层数
'''Recurrent Neural Network for Text Classification with Multi-Task Learning'''
'''
    shape :
    1. embedding output shape : [batch_size, seq_len, embeding] = [128, 32, 300].
    2. lstm output shape : [batch_size, seq_len, hidden_size * 2] = [128, 32, 256] 此处的32不能再看成一句话内的32个词,已经变成了lstm的32个时刻.
    3. out[:, -1, :] output shape : [batch_size, hidden_size * 2] = [128, 256] 取句子最后时刻的 hidden state.
    other:
    1. lstm层数大小不会影响lstm的输出形状.
    2. 双向lstm会使输出形状翻倍,即hidden_size * 2.
'''
class Model(nn.Module):
    def __init__(self, config):
        super(Model, self).__init__()
        if config.embedding_pretrained is not None:
            self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False)
        else:
            self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1)
        self.lstm = nn.LSTM(config.embed, config.hidden_size, config.num_layers,
                            bidirectional=True, batch_first=True, dropout=config.dropout)
        self.fc = nn.Linear(config.hidden_size * 2, config.num_classes)
    def forward(self, x):
        x, _ = x
        out = self.embedding(x)  # [batch_size, seq_len, embeding] = [128, 32, 300]
        out, _ = self.lstm(out) # [batch_size, seq_len, hidden_size * 2]=[128, 32, 256]
        out = self.fc(out[:, -1, :]) # [batch_size, hidden_size * 2] = [128, 256]
        return out

   2、DPCNN

  参考论文《Deep Pyramid Convolutional Neural Networks for Text Categorization》提出的DPCNN模型,我们编写DPCNN模型,代码如下:

class Config(object):
    """配置参数"""
    def __init__(self, dataset, embedding):
        self.model_name = 'DPCNN'
        self.train_path = dataset + '/data/train.csv'                                # 训练集
        self.dev_path = dataset + '/data/dev.csv'                                    # 验证集
        self.test_path = dataset + '/data/test.csv'                                  # 测试集
        self.class_list = [x.strip() for x in open(
            dataset + '/data/class.txt', encoding='utf-8').readlines()]              # 类别名单
        self.vocab_path = dataset + '/data/vocab.pkl'                                # 词表
        self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt'        # 模型训练结果
        self.log_path = dataset + '/log/' + self.model_name
        self.embedding_pretrained = torch.tensor(
            np.load(dataset + '/data/' + embedding)["embeddings"].astype('float32'))\
            if embedding != 'random' else None                                       # 预训练词向量
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')   # 设备
        self.dropout = 0.5                                              # 随机失活
        self.require_improvement = 1000                                 # 若超过1000batch效果还没提升,则提前结束训练
        self.num_classes = len(self.class_list)                         # 类别数
        self.n_vocab = 0                                                # 词表大小,在运行时赋值
        self.num_epochs = 20                                            # epoch数
        self.batch_size = 128                                           # mini-batch大小
        self.pad_size = 14                                              # 每句话处理成的长度(短填长切)
        self.learning_rate = 1e-3                                       # 学习率
        self.embed = self.embedding_pretrained.size(1)\
            if self.embedding_pretrained is not None else 300           # 字向量维度
        self.num_filters = 250                                          # 卷积核数量(channels数)
'''Deep Pyramid Convolutional Neural Networks for Text Categorization'''
class Model(nn.Module):
    def __init__(self, config):
        super(Model, self).__init__()
        if config.embedding_pretrained is not None:
            self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False)
        else:
            self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1)
        self.conv_region = nn.Conv2d(1, config.num_filters, (3, config.embed), stride=1)
        self.conv = nn.Conv2d(config.num_filters, config.num_filters, (3, 1), stride=1)
        self.max_pool = nn.MaxPool2d(kernel_size=(3, 1), stride=2)
        self.padding1 = nn.ZeroPad2d((0, 0, 1, 1))  # top bottom
        self.padding2 = nn.ZeroPad2d((0, 0, 0, 1))  # bottom
        self.relu = nn.ReLU()
        self.fc = nn.Linear(config.num_filters, config.num_classes)
    def forward(self, x):
        x = x[0]
        x = self.embedding(x)
        x = x.unsqueeze(1)  # [batch_size, 250, seq_len, 1]
        # Region embedding 区域嵌入 3-gram
        x = self.conv_region(x)  # [batch_size, 250, seq_len-3+1, 1]
        x = self.padding1(x)  # [batch_size, 250, seq_len, 1]
        x = self.relu(x)
        x = self.conv(x)  # [batch_size, 250, seq_len-3+1, 1]
        x = self.padding1(x)  # [batch_size, 250, seq_len, 1]
        x = self.relu(x)
        x = self.conv(x)  # [batch_size, 250, seq_len-3+1, 1]
        while x.size()[2] > 2:
            x = self._block(x)
        x = x.squeeze()  # [batch_size, num_filters(250)]
        x = self.fc(x)
        return x
    def _block(self, x):
        x = self.padding2(x)
        px = self.max_pool(x)
        x = self.padding1(px)
        x = F.relu(x)
        x = self.conv(x)
        x = self.padding1(x)
        x = F.relu(x)
        x = self.conv(x)
        # Short Cut
        x = x + px
        return x

   3、TextCNN

  参考论文《Convolutional Neural Networks for Sentence Classification》提出的TextCNN模型,我们编写TextCNN模型,代码如下:

class Config(object):
    """配置参数"""
    def __init__(self, dataset, embedding):
        self.model_name = 'TextCNN'
        self.train_path = dataset + '/data/train.csv'                                # 训练集
        self.dev_path = dataset + '/data/dev.csv'                                    # 验证集
        self.test_path = dataset + '/data/test.csv'                                  # 测试集
        self.class_list = [x.strip() for x in open(
            dataset + '/data/class.txt', encoding='utf-8').readlines()]              # 类别名单
        self.vocab_path = dataset + '/data/vocab.pkl'                                # 词表
        self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt'        # 模型训练结果
        self.log_path = dataset + '/log/' + self.model_name
        self.embedding_pretrained = torch.tensor(
            np.load(dataset + '/data/' + embedding)["embeddings"].astype('float32'))\
            if embedding != 'random' else None                                       # 预训练词向量
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')   # 设备
        self.dropout = 0.5                                              # 随机失活
        self.require_improvement = 1000                                 # 若超过1000batch效果还没提升,则提前结束训练
        self.num_classes = len(self.class_list)                         # 类别数
        self.n_vocab = 0                                                # 词表大小,在运行时赋值
        self.num_epochs = 20                                            # epoch数
        self.batch_size = 128                                           # mini-batch大小
        self.pad_size = 14                                              # 每句话处理成的长度(短填长切)
        self.learning_rate = 1e-3                                       # 学习率
        self.embed = self.embedding_pretrained.size(1)\
            if self.embedding_pretrained is not None else 300           # 字向量维度
        self.filter_sizes = (2, 3, 4)                                   # 卷积核尺寸
        self.num_filters = 256                                          # 卷积核数量(channels数)
'''Convolutional Neural Networks for Sentence Classification'''
class Model(nn.Module):
    def __init__(self, config):
        super(Model, self).__init__()
        if config.embedding_pretrained is not None:
            self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False)
        else:
            self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1)
        self.convs = nn.ModuleList(
            [nn.Conv2d(1, config.num_filters, (k, config.embed)) for k in config.filter_sizes])
        self.dropout = nn.Dropout(config.dropout)
        self.fc = nn.Linear(config.num_filters * len(config.filter_sizes), config.num_classes)
    def conv_and_pool(self, x, conv):
        x = F.relu(conv(x)).squeeze(3)
        x = F.max_pool1d(x, x.size(2)).squeeze(2)
        return x
    def forward(self, x):
        out = self.embedding(x[0])
        out = out.unsqueeze(1)
        out = torch.cat([self.conv_and_pool(out, conv) for conv in self.convs], 1)
        out = self.dropout(out)
        out = self.fc(out)
        return out

  以上模型都是按照论文复现的,其中Config类的配置是几乎相同的,其中参数有:

  ·model_name:模型名称,在训练模型时,需要设置--model model_name

  ·train_pathdev_pathtest_path:训练集、验证集、测试集的地址;

  ·class_list:读取存放类别的txt文件,主要是为了获取有几个标签;

  ·vocab_path:词典地址;

  ·save_path:模型训练结果的存放地址;

  ·embedding_pretrained:读取预训练词向量,如果设置--embedding random那么不会读取预训练词向量,会随机生成词向量,在训练中反向更新;

  ·device:设备,选择使用GPU还是CPU;

  ·dropout:随机失活率,可以加在很多层上;

  ·require_improvement:若超过1000batch效果还没提升,则提前结束训练;

  ·num_classes:类别数;

  ·num_epochs:训练的epoch数;

  ·batch_size:一个batch中有几条文本;

  ·pad_size:每句话处理成的长度(短填长切)

  ·learning_rate:学习率。

[2] 模型训练-验证-测试代码


   训练:

def train(config, model, train_iter, dev_iter, test_iter):
    start_time = time.time()
    model.train()
    optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
    # 学习率指数衰减,每次epoch:学习率 = gamma * 学习率
    # scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
    total_batch = 0  # 记录进行到多少batch
    dev_best_loss = float('inf')
    last_improve = 0  # 记录上次验证集loss下降的batch数
    flag = False  # 记录是否很久没有效果提升
    writer = SummaryWriter(log_dir=config.log_path + '/' + time.strftime('%m-%d_%H.%M', time.localtime()))
    for epoch in range(config.num_epochs):
        print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs))
        # scheduler.step() # 学习率衰减
        for i, (trains, labels) in enumerate(train_iter):
            outputs = model(trains)
            model.zero_grad()
            loss = F.cross_entropy(outputs, labels)
            # print(f"&&&&&&&&&&{epoch}&&{i}")
            loss.backward()
            # print(f"###############{epoch}##{i}")
            optimizer.step()
            if total_batch % 100 == 0:
                # 每多少轮输出在训练集和验证集上的效果
                true = labels.data.cpu()
                predic = torch.max(outputs.data, 1)[1].cpu()
                train_acc = metrics.accuracy_score(true, predic)
                dev_acc, dev_loss = evaluate(config, model, dev_iter)
                if dev_loss < dev_best_loss:
                    dev_best_loss = dev_loss
                    torch.save(model.state_dict(), config.save_path)
                    improve = '*'
                    last_improve = total_batch
                else:
                    improve = ''
                time_dif = get_time_dif(start_time)
                msg = 'Iter: {0:>6},  Train Loss: {1:>5.2},  Train Acc: {2:>6.2%},  Val Loss: {3:>5.2},  Val Acc: {4:>6.2%},  Time: {5} {6}'
                print(msg.format(total_batch, loss.item(), train_acc, dev_loss, dev_acc, time_dif, improve))
                writer.add_scalar("loss/train", loss.item(), total_batch)
                writer.add_scalar("loss/dev", dev_loss, total_batch)
                writer.add_scalar("acc/train", train_acc, total_batch)
                writer.add_scalar("acc/dev", dev_acc, total_batch)
                model.train()
            total_batch += 1
            if total_batch - last_improve > config.require_improvement:
                # 验证集loss超过1000batch没下降,结束训练
                print("No optimization for a long time, auto-stopping...")
                flag = True
                break
        if flag:
            break
    writer.close()
    test(config, model, test_iter)

   评估:

def evaluate(config, model, data_iter, test=False):
    model.eval()
    loss_total = 0
    predict_all = np.array([], dtype=int)
    labels_all = np.array([], dtype=int)
    with torch.no_grad():
        for texts, labels in data_iter:
            outputs = model(texts)
            loss = F.cross_entropy(outputs, labels)
            loss_total += loss
            labels = labels.data.cpu().numpy()
            predic = torch.max(outputs.data, 1)[1].cpu().numpy()
            labels_all = np.append(labels_all, labels)
            predict_all = np.append(predict_all, predic)
    acc = metrics.accuracy_score(labels_all, predict_all)
    if test:
        report = metrics.classification_report(labels_all, predict_all, target_names=config.class_list, digits=4)
        confusion = metrics.confusion_matrix(labels_all, predict_all)
        return acc, loss_total / len(data_iter), report, confusion
    return acc, loss_total / len(data_iter)

   评估:

def test(config, model, test_iter):
    # test
    model.load_state_dict(torch.load(config.save_path))
    model.eval()
    start_time = time.time()
    test_acc, test_loss, test_report, test_confusion = evaluate(config, model, test_iter, test=True)
    msg = 'Test Loss: {0:>5.2},  Test Acc: {1:>6.2%}'
    print(msg.format(test_loss, test_acc))
    print("Precision, Recall and F1-Score...")
    print(test_report)
    print("Confusion Matrix...")
    print(test_confusion)
    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)

   查看输出:每过100轮会打印一次

Epoch [1/10]
Iter:      0,  Train Loss:   2.1,  Train Acc: 12.50%,  Val Loss:   2.1,  Val Acc: 15.15%,  Time: 0:00:04 *
Iter:    100,  Train Loss:   0.9,  Train Acc: 69.53%,  Val Loss:  0.99,  Val Acc: 65.16%,  Time: 0:00:06 *
Iter:    200,  Train Loss:   0.9,  Train Acc: 68.75%,  Val Loss:  0.86,  Val Acc: 70.27%,  Time: 0:00:08 *

[3] 如何运行代码


   模型主要有两个参数:

  ·model:模型名称;

  ·embedding:预训练词向量名称或者random

   在项目的run.py文件运行时同时添加参数,如下图:

image.png


相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
12天前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
46 3
|
1月前
|
存储 监控 网络协议
服务器压力测试是一种评估系统在极端条件下的表现和稳定性的技术
【10月更文挑战第11天】服务器压力测试是一种评估系统在极端条件下的表现和稳定性的技术
116 32
|
17天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
34 1
|
21天前
|
前端开发 数据管理 测试技术
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第27天】本文介绍了前端自动化测试中Jest和Cypress的实战应用与最佳实践。Jest适合React应用的单元测试和快照测试,Cypress则擅长端到端测试,模拟用户交互。通过结合使用这两种工具,可以有效提升代码质量和开发效率。最佳实践包括单元测试与集成测试结合、快照测试、并行执行、代码覆盖率分析、测试环境管理和测试数据管理。
39 2
|
22天前
|
前端开发 JavaScript 数据可视化
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第26天】前端自动化测试在现代软件开发中至关重要,Jest和Cypress分别是单元测试和端到端测试的流行工具。本文通过解答一系列问题,介绍Jest与Cypress的实战应用与最佳实践,帮助开发者提高测试效率和代码质量。
31 2
|
25天前
|
编解码 人工智能 自然语言处理
迈向多语言医疗大模型:大规模预训练语料、开源模型与全面基准测试
【10月更文挑战第23天】Oryx 是一种新型多模态架构,能够灵活处理各种分辨率的图像和视频数据,无需标准化。其核心创新包括任意分辨率编码和动态压缩器模块,适用于从微小图标到长时间视频的多种应用场景。Oryx 在长上下文检索和空间感知数据方面表现出色,并且已开源,为多模态研究提供了强大工具。然而,选择合适的分辨率和压缩率仍需谨慎,以平衡处理效率和识别精度。论文地址:https://www.nature.com/articles/s41467-024-52417-z
42 2
|
1月前
|
机器学习/深度学习 监控 计算机视觉
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
352 0
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
弹性计算 网络协议 Linux
云服务器评估迁移时间与测试传输速度
云服务器评估迁移时间与测试传输速度
|
1月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
66 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
2月前
|
移动开发 JSON Java
Jmeter实现WebSocket协议的接口测试方法
WebSocket协议是HTML5的一种新协议,实现了浏览器与服务器之间的全双工通信。通过简单的握手动作,双方可直接传输数据。其优势包括极小的头部开销和服务器推送功能。使用JMeter进行WebSocket接口和性能测试时,需安装特定插件并配置相关参数,如服务器地址、端口号等,还可通过CSV文件实现参数化,以满足不同测试需求。
247 7
Jmeter实现WebSocket协议的接口测试方法

热门文章

最新文章

下一篇
无影云桌面