【菜菜的CV进阶之路-Pytorch基础-model.eval】同一个模型测试:shuffle=False和shuffle=True 结果差异很大

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 【菜菜的CV进阶之路-Pytorch基础-model.eval】同一个模型测试:shuffle=False和shuffle=True 结果差异很大

Problem:

Why I only change “shuffle=False” to “shuffle=True” in my DataLoader when I test my model, my test result will be different so much?

Solve:

这个问题现在看来挺脑残的...唉,排查了老久...其实很简单,就是因为pytorch新手入门,很多东西没学好,在测试的时候没有先进行model.eval():

Do need to use model.eval() when I test?

1. Sure, Dropout works as a regularization for preventing overfitting during training.
2. It randomly zeros the elements of inputs in Dropout layer on forward call.
3. It should be disabled during testing since you may want to use full model (no element is masked)

用 model.eval(),让model变成测试模式,这主要是对dropout和batch normalization的操作在训练和测试的时候是不一样的:

Batch NormalizationDropout

  • 训练时是正对每个min-batch的,但是在测试中往往是针对单张图片,即不存在min-batch的概念。由于网络训练完毕后参数都是固定的,因此每个批次的均值和方差都是不变的,因此直接结算所有batch的均值和方差。所有Batch Normalization的训练和测试时的操作不同
  • 在训练中,每个隐层的神经元先乘概率P,然后在进行激活,在测试中,所有的神经元先进行激活,然后每个隐层神经元的输出乘P。

Extension:

Batch Normalization

BN主要时对网络中间的每层进行归一化处理,并且使用变换重构(Batch Normalizing Transform)保证每层所提取的特征分布不会被破坏,详细参见Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift。该算法主要如下:

训练时是正对每个min-batch的,但是在测试中往往是针对单张图片,即不存在min-batch的概念。由于网络训练完毕后参数都是固定的,因此每个批次的均值和方差都是不变的,因此直接结算所有batch的均值和方差。所有Batch Normalization的训练和测试时的操作不同

Dropout

Dropout能够克服Overfitting,在每个训练批次中,通过忽略一半的特征检测器,可以明显的减少过拟合现象,详细见文章:Dropout: A Simple Way to Prevent Neural Networks from Overtting具体如下所示:

在训练中,每个隐层的神经元先乘概率P,然后在进行激活,在测试中,所有的神经元先进行激活,然后每个隐层神经元的输出乘P。

###模型的保存和加载

模型的保存和加载有两种方式:

(1) 仅仅保存和加载模型参数

1. torch.save(the_model.state_dict(), PATH)
2. 
3. the_model = TheModelClass(*args, **kwargs)
4. the_model.load_state_dict(torch.load(PATH))

(2) 保存和加载整个模型

1. torch.save(the_model, PATH)
2. 
3. the_model = torch.load(PATH)

第一种方式需要自己定义网络,并且其中的参数名称与结构要与保存的模型中的一致(可以是部分网络,比如只使用VGG的前几层),相对灵活,便于对网络进行修改。第二种方式则无需自定义网络,保存时已把网络结构保存,比较死板,不能调整网络结构。

pytorch使用注意:

  • 当网络中有 dropout,bn 的时候。训练的要记得 net.train(), 测试 要记得 net.eval()
  • 在测试的时候 创建输入 Variable 的时候 要记得 volatile=True
  • torch.sum(Tensor), torch.mean(Tensor) 返回的是 python 浮点数,不是 Tensor。
  • 在不需要 bp 的地方用 Tensor 运算。

参考:

PyTorch(七)——模型的训练和测试、保存和加载_hudongloop的博客-CSDN博客

pytorch学习笔记(十六):pytorch 写代码时应该注意_u012436149的博客-CSDN博客

Pytorch的net.train 和 net.eval的使用_Never-Giveup的博客-CSDN博客_net.eval

带你跨过神经网络训练常见的37个坑_语言 & 开发_Slav Ivanov_InfoQ精选文章


AIEarth是一个由众多领域内专家博主共同打造的学术平台,旨在建设一个拥抱智慧未来的学术殿堂!【平台地址:https://devpress.csdn.net/aiearth】 很高兴认识你!加入我们共同进步!

目录
相关文章
|
2月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
364 2
|
20天前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
35 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
2月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
69 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
2月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
121 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
1月前
|
编解码 人工智能 自然语言处理
迈向多语言医疗大模型:大规模预训练语料、开源模型与全面基准测试
【10月更文挑战第23天】Oryx 是一种新型多模态架构,能够灵活处理各种分辨率的图像和视频数据,无需标准化。其核心创新包括任意分辨率编码和动态压缩器模块,适用于从微小图标到长时间视频的多种应用场景。Oryx 在长上下文检索和空间感知数据方面表现出色,并且已开源,为多模态研究提供了强大工具。然而,选择合适的分辨率和压缩率仍需谨慎,以平衡处理效率和识别精度。论文地址:https://www.nature.com/articles/s41467-024-52417-z
49 2
|
3月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
203 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
3月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
54 3
PyTorch 模型调试与故障排除指南
|
2月前
|
测试技术
谈谈【软件测试的基础知识,基础模型】
谈谈【软件测试的基础知识,基础模型】
32 5
|
2月前
|
存储 并行计算 PyTorch
探索PyTorch:模型的定义和保存方法
探索PyTorch:模型的定义和保存方法
|
2月前
|
敏捷开发 测试技术
开发模型(瀑布、螺旋、scrum) 和 测试模型(V、W)、增量和迭代、敏捷(思想)及敏捷开发 scrum
文章详细介绍了软件开发过程中的不同开发模型(瀑布、螺旋、Scrum)和测试模型(V模型、W模型),以及增量和迭代的概念,最后阐述了敏捷思想及其在敏捷开发(如Scrum)中的应用。
128 0
开发模型(瀑布、螺旋、scrum) 和 测试模型(V、W)、增量和迭代、敏捷(思想)及敏捷开发 scrum

热门文章

最新文章