【建议收藏】Mysql+Flink CDC+Doris 数据同步实战(上)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
实时计算 Flink 版,5000CU*H 3个月
简介: 【建议收藏】Mysql+Flink CDC+Doris 数据同步实战

1、业务需求及其痛点

公司诸多业务需求求其最新状态,例如车最新状态,桩最新状态,报告最新状态,检定任务最新状态,业务信息所有的明细数据保存至doris中,但是无法得知其最新状态集;


阶段1:根据GB4403、GB27930等协议,数据允许迟到7天,也就是说,通过sql进行计算的时候,必须取最近7天的数据,平均每天数据1000w条,就是单次计算大概在7000w条左右,通过创建最新状态表,然后通过sql取出结果集至状态表当中,通过调度框架dolphinscheduler对其进行调度;由于是最新状态其实时性比较高,往常是设定了1分钟的调度时间

640.png

痛点:

①:实时性根据调度时间确定,不管时间设定多短,都不够实时

②:频繁重复计算浪费大量计算资源

insert into the_monitor_latest_status
select vin, daq_time, province, city, district, odo, cha_state, op_mode, op_state, soc, curr, volt, lat, lng
from
    (select vin, daq_time, province, city, district, odo, cha_state, op_mode, op_state, soc, curr, volt, lat, lng,row_number() over (partition by vin order by daq_time desc)ro
     from ods_monitordata
     where daq_time >= date_format(data_sub(current_date(),interval 7 day),'%Y-%m-%d 00:00:00') and odo != 0 and province != 'unknown')t1
where ro = 1;

阶段2:

640.png

痛点:

①:开发成本高,每张表都需要写一段程序

Mysql外表需求和痛点:

业务系统很多表结构一直存储在mysql当中,其中的大表(数据量大)都会同步至doris中,数据量较小的维表没必要同步至doris当中,可以通过外表的方式挂载到doris中,但是创建外表的步骤较为繁琐,只能一张张手动创建,另外mysql中表结构更改后,外表就需要重建

痛点:

①:外部表手动创建繁琐,如100张表全部手动创建

②:mysql表结构更改就需要重新创建外表

2、mysql_to_doris结构图

工具实现上述优化,优点如下:

  • shell编写极其轻量,开源即用
  • 纯sql语法开发成本0特别适用于当前业务场景
  • 简单配置实现全程自动化处理

架构图

640.png

640.png

mysql_to_doris/
├── bin
│   ├── auto.sh  --Flink_job启动脚本
│   ├── create_doris.sh  --生成doris映射flink的建表语句
│   ├── create_mysql.sh  --生成mysql映射flink的建表语句
│   ├── e_auto.sh  --外部表执行脚本
│   ├── e_mysql_to_doris.sh  --外部表建表语句生成脚本
│   ├── flinksql.sh  --flink_job语句生成脚本
│   └── insert_into.sh  --insert into 语句生成脚本
├── conf
│   ├── doris
│   │   ├── doris.conf  --doris连接配置信息
│   │   ├── flink.conf  --flink特殊配置项
│   │   └── tables  --sink端的库名.表名
│   ├── e_mysql
│   │   ├── doris.conf  --外部表连接信息
│   │   ├── doris_tables  --外部表库名.表名(自定义)
│   │   ├── mysql.conf  --外部表连接信息
│   │   └── mysql_tables  --源表库名.表名
│   ├── flink
│   │   ├── flink_conf  --flink配置信息
│   └── mysql
│       ├── flink.conf  --flink特殊配置项
│       ├── mysql.conf  --mysql连接配置信息
│       └── tables  --source端的库名.表名
└── lib
    ├── doris_to_flink.sh  --doris映射flink表结构转换
    ├── mysql_to_doris.sh  --mysql映射doris外表结构转换
    └── mysql_to_flink.sh  --mysql映射flink外表结构转换

代码流程:

1、获取建表语句

for table in $(cat ../conf/e_mysql/mysql_tables |grep -v '#' | awk -F '\n' '{print $1}')
        do
        echo "show create table ${table};" |mysql -h$mysql_host -uroot -p$mysql_password  >> $path
done

640.png

2、调整格式

awk -F '\t' '{print $2}' $path |awk '!(NR%2)' |awk '{print $0 ";"}' > ../result/tmp111.sql
sed -i 's/\\n/\n/g' ../result/tmp111.sql
sed -n '/CREATE TABLE/,/ENGINE\=/p' ../result/tmp111.sql > ../result/tmp222.sql
##delete tables special struct
sed -i '/^  CON/d' ../result/tmp222.sql
sed -i '/^  KEY/d' ../result/tmp222.sql

640.png

3、拼接doris信息

sed -i '/ENGINE=/a) ENGINE=ODBC\n COMMENT "ODBC"\nPROPERTIES (\n"host" = "ApacheDorisHostIp",\n"port" = "3306",\n"user" = "root",\n"password" = "ApacheDorisHostPassword",\n"database" = "ApacheDorisDataBases",\n"table" = "ApacheDorisTables",\n"driver" = "MySQL",\n"odbc_type" = "mysql");' $path

640.png

3、涉及组件介绍:

  • FlinkCDC版本2.2.1
  • Doris Flink Connector版本:1.14_2.12-1.0.0
  • FLink版本:1.14.5
  • Hadoop版本:3.1.3
  • doris版本:1.1.1
  • mysql odbc版本:5.3.13
链接:https://pan.baidu.com/s/1eMML1Km-VYa01SRQaGuwBQ 
提取码:yyds

什么是 CDC

CDC 是 Change Data Capture 变更数据获取的简称。


核心思想是,监测并捕获数据库的变动(包括数据或数据表的插入 INSERT、更新 UPDATE、删除 DELETE 等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。

CDC 技术应用场景也非常广泛,包括:

  • 数据分发:将一个数据源分发给多个下游,常用于业务解耦、微服务。
  • 数据集成:将分散异构的数据源集成到数据仓库中,消除数据孤岛,便于后续的分析。
  • 数据迁移:常用于数据库备份、容灾等。

什么是 Apache Doris

Apache Doris 是一个现代化的 MPP 分析型数据库产品。仅需亚秒级响应时间即可获得查询结果,有效地支持实时数据分析。Apache Doris 的分布式架构非常简洁,易于运维,并且可以支持 10PB 以上的超大数据集。

Apache Doris 可以满足多种数据分析需求,例如固定历史报表,实时数据分析,交互式数据分析和探索式数据分析等。可以使数据分析工作更加简单高效!

什么是 Doris Flink Connector

Flink Doris Connector 是 Doris 社区为了方便用户使用 Flink 读写 Doris 数据表的一个扩展。实现了通过flink实时写入数据进入到doris的可能,Flink Doris Connector之前,针对业务不规则数据,经常需要针对消息做规范处理,空值过滤等写入新的topic,然后再启动Routine load写入Doris。Flink Doris Connector之后,flink可以直接读取kafka,直接写入doris。

什么是Doris On ODBC

ODBC External Table Of Doris 提供了Doris通过数据库访问的标准接口(ODBC)来访问外部表,外部表省去了繁琐的数据导入工作,让Doris可以具有了访问各式数据库的能力,并借助Doris本身的OLAP的能力来解决外部表的数据分析问题:

  1. 支持各种数据源接入Doris
  2. 支持Doris与各种数据源中的表联合查询,进行更加复杂的分析操作
  3. 通过insert into将Doris执行的查询结果写入外部的数据源
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
240 66
|
3月前
|
监控 关系型数据库 MySQL
深入了解MySQL主从复制:构建高效稳定的数据同步架构
深入了解MySQL主从复制:构建高效稳定的数据同步架构
158 1
|
4月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
|
2月前
|
存储 监控 数据处理
flink 向doris 数据库写入数据时出现背压如何排查?
本文介绍了如何确定和解决Flink任务向Doris数据库写入数据时遇到的背压问题。首先通过Flink Web UI和性能指标监控识别背压,然后从Doris数据库性能、网络连接稳定性、Flink任务数据处理逻辑及资源配置等方面排查原因,并通过分析相关日志进一步定位问题。
221 61
|
5月前
|
关系型数据库 MySQL 数据库
【MySQL】手把手教你MySQL数据同步
【MySQL】手把手教你MySQL数据同步
|
2月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
450 1
|
3月前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
146 5
|
3月前
|
架构师 关系型数据库 MySQL
MySQL最左前缀优化原则:深入解析与实战应用
【10月更文挑战第12天】在数据库架构设计与优化中,索引的使用是提升查询性能的关键手段之一。其中,MySQL的最左前缀优化原则(Leftmost Prefix Principle)是复合索引(Composite Index)应用中的核心策略。作为资深架构师,深入理解并掌握这一原则,对于平衡数据库性能与维护成本至关重要。本文将详细解读最左前缀优化原则的功能特点、业务场景、优缺点、底层原理,并通过Java示例展示其实现方式。
158 1
|
2月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
234 0
|
4月前
|
监控 关系型数据库 MySQL
zabbix agent集成percona监控MySQL的插件实战案例
这篇文章是关于如何使用Percona监控插件集成Zabbix agent来监控MySQL的实战案例。
106 2
zabbix agent集成percona监控MySQL的插件实战案例

热门文章

最新文章