MySQL与Redis协同作战:优化百万数据查询的实战经验

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 【10月更文挑战第13天】在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。

在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。

背景与挑战

随着业务数据量的激增,我们面临着数据统计查询响应时间过长的问题。在没有优化的情况下,数据库查询可能需要数分钟甚至更长时间,这对于需要实时数据分析的业务来说是不可接受的。

解决方案

1. 数据库分片

首先,我们对MySQL数据库进行了分片处理,将数据分散到多个数据库实例中,以减轻单个数据库的负载。

2. 读写分离

通过配置主从复制,我们将读操作和写操作分离,读操作分散到多个从数据库,写操作仍然在主数据库上进行。

3. 热点数据缓存

对于那些频繁查询但不常更新的数据,我们将其缓存在Redis中。这样,当用户发起查询请求时,可以直接从Redis中获取数据,而不是每次都去数据库查询。

4. 异步处理

对于一些非实时性的数据统计,我们采用了异步处理的方式。用户发起统计请求后,系统会将请求放入消息队列中,然后由后台服务异步处理。

5. 定期更新统计数据

在业务低峰时段,我们定期计算统计数据,并将结果存储在Redis中,以供高峰时段快速提供数据。

实施步骤

  1. 数据库分片:根据数据的访问模式,我们将数据水平分割,分布到不同的数据库实例中。
  2. 读写分离:配置MySQL的主从复制,将读操作路由到从服务器,写操作在主服务器上执行。
  3. Redis缓存:实现数据的快速读取,减少对MySQL的直接访问。
  4. 异步处理:使用消息队列和后台服务处理非实时性数据统计任务。
  5. 定期更新:在系统负载较低时,预先计算并更新统计数据到Redis。

结果

通过上述优化策略,我们显著提高了数据统计的查询效率,查询响应时间从原来的数秒甚至数十秒降低到了秒级,用户体验得到了显著改善。

结论

MySQL与Redis的结合使用,为处理百万级数据统计提供了一种有效的解决方案。通过数据库分片、读写分离、热点数据缓存、异步处理和定期更新统计数据等策略,我们不仅提升了系统的处理能力,也优化了用户体验。这种优化方法不仅适用于数据统计场景,也适用于其他需要处理大规模数据的业务场景,具有广泛的应用价值。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
1月前
|
缓存 NoSQL 关系型数据库
MySQL 与 Redis 如何保证双写一致性?
我是小假 期待与你的下一次相遇 ~
328 7
|
4月前
|
关系型数据库 应用服务中间件 nginx
Docker一键安装中间件(RocketMq、Nginx、MySql、Minio、Jenkins、Redis)
本系列脚本提供RocketMQ、Nginx、MySQL、MinIO、Jenkins和Redis的Docker一键安装与配置方案,适用于快速部署微服务基础环境。
|
1月前
|
NoSQL 算法 Redis
【Docker】(3)学习Docker中 镜像与容器数据卷、映射关系!手把手带你安装 MySql主从同步 和 Redis三主三从集群!并且进行主从切换与扩容操作,还有分析 哈希分区 等知识点!
Union文件系统(UnionFS)是一种**分层、轻量级并且高性能的文件系统**,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem) Union 文件系统是 Docker 镜像的基础。 镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。
324 5
|
2月前
|
存储 NoSQL 前端开发
Redis专题-实战篇一-基于Session和Redis实现登录业务
本项目基于SpringBoot实现黑马点评系统,涵盖Session与Redis两种登录方案。通过验证码登录、用户信息存储、拦截器校验等流程,解决集群环境下Session不共享问题,采用Redis替代Session实现数据共享与自动续期,提升系统可扩展性与安全性。
227 3
Redis专题-实战篇一-基于Session和Redis实现登录业务
|
2月前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
188 1
Redis专题-实战篇二-商户查询缓存
|
3月前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
199 6
|
4月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
131 2
|
4月前
|
存储 SQL 关系型数据库
MySQL 动态分区管理:自动化与优化实践
本文介绍了如何利用 MySQL 的存储过程与事件调度器实现动态分区管理,自动化应对数据增长,提升查询性能与数据管理效率,并详细解析了分区创建、冲突避免及实际应用中的关键注意事项。
194 0
|
存储 缓存 NoSQL
Redis实战之入门进阶到精通
Redis 是一个远程内存数据库,它不仅性能强劲,而且还具有复制特性以及为解决问题而生的独一无二的数据模型。Redis 提供了 5 种不同类型的数据结构,各式各样的问题都可以很自然地映射到这些数据结构上:Redis 的数据结构致力于帮助用户解决问题,而不会像其他数据库那样,要求用户扭曲问题来适应数据库。除此之外,通过复制、持久化(persistence)和客户端分片(client-side sharding)等特性,用户可以很方便地将 Redis 扩展成一个能够包含数百 GB 数据、每秒处理上百万次请求的系统。
Redis实战之入门进阶到精通
|
存储 NoSQL Java
当Java遇到Redis:Jedis实战入门
Redis是一个开源,高级的键值存储和一个适用的解决方案,用于构建高性能,可扩展的Web应用程序。本文将概要介绍Redis的特性和语法,并以实例代码的形式介绍如何通过Jedis在java语言环境下控制Redis,帮助各位读者快速入门。
1758 0

推荐镜像

更多