使用机器学习和Python揭开DNA测序神秘面纱(一)

简介: 使用机器学习和Python揭开DNA测序神秘面纱(一)

简介

基因组是生物体中DNA的完整集合。所有生物物种都有一个基因组,但是它们的差异很大。例如,人类基因组被排列成23条染色体,这有点像百科全书被编辑成23卷。如果算上所有字符(单个DNA“碱基对”),每个人类基因组中将有超过60亿个字符。所以这是一个巨大的工程。

人类基因组大约有60亿个字符。如果您认为基因组(完整的DNA序列)就像一本书,那就是一本由大约60亿个“ A”,“ C”,“ G”和“ T”字母组成的书。每个人都有独特的基因组。尽管如此,科学家发现人类基因组的大部分彼此相似。

作为数据驱动的科学,基因组学广泛地利用机器学习来捕获数据中的关系并推断出新的生物学假设。但是,要想拥有从不断增长的基因组学数据中提取新发现的能力,就需要更强大的机器学习模型。通过有效利用大型数据集,深度学习已给了计算机视觉和自然语言处理等领域带来了很大进步。它已成为许多基因组建模任务的首选方法,包括预测遗传变异对基因调控机制(如DNA接受性和DNA剪接)的影响。

在本文中,我们将了解如何解释DNA结构以及如何使用机器学习算法来建立DNA序列数据的预测模型。

DNA序列如何表示?

该图显示了DNA双螺旋结构的一小部分。

image.png

DNA的双螺旋结构

双螺旋是DNA的化学表示。但是DNA很特别。它是由四种类型的碱基组成的核苷酸:腺嘌呤(A),胸腺嘧啶(T),鸟嘌呤(G)和胞嘧啶(C)。我们总是称它们为ACGT

这四种化学物质通过氢键以任何可能的顺序连接在一起,形成一条链,这形成了DNA双螺旋的一条线。双螺旋的第二条线平衡了第一根。因此,如果第一条线上有A,则第二条线上对应位置必须为T。此外,C和G始终保持平衡。因此,一旦您确定了螺旋的一个螺纹,就可以随时拼写另一个螺纹。

image.png


单个DNA线(螺旋)的序列

这些碱基的顺序决定了DNA链中包含哪些生物学指令。例如,序列ATCGTT可能指示蓝眼睛,而ATCGCT可能指示棕色眼睛。

使用Python处理DNA序列数据

image.png


熟悉诸如Biopythonsquiggle之类的Python包将在处理Python中的生物序列数据时为您提供帮助。

Biopython是python模块的集合,这些模块提供处理DNA,RNA和蛋白质序列操作的功能,例如DNA字符串的反向互补,寻找蛋白质序列中的基序列等。它提供了很多解析器,可以读取所有主要的遗传数据库,例如 GenBank,SwissPort,FASTA等,

image.png


安装Biopython


pip install biopython

**Squiggle:**这是一个工具,可以自动生成交互式网页下的原始DNA序列的二维图形表示。考虑到易用性,Squiggle实现了几种序列可视化算法,并引入了“为方便人类使用而做”的新颖可视化方法。

安装Squiggle


pip install Squiggle

DNA序列数据通常以“ fasta”格式的文件格式储存。Fasta格式通过包含注释的大于号和包含序列的另一行作为组成自己的单行数据:

“AAGGTGAGTGAAATCTCAACACGAGTATGGTTCTGAGAGTAGCTCTGTAACTCTGAGG”*

文件可以包含一个或多个DNA序列。还有许多其他格式,但是fasta是最常见的格式。

这是使用Biopython处理Fasta格式的DNA序列的简要示例。序列对象将包含诸如序列ID和sequence等属性以及可以直接使用的序列长度。

我们将使用Biopython的Bio.SeqIO来解析DNA序列数据(fasta)。它提供了一个简单的统一界面来输入和输出各种文件格式。


from Bio import SeqIOfor for sequence in SeqIO.parse('./drive/My Drive/example.fa', "fasta"):    print(sequence.id)    print(sequence.seq)    print(len(sequence))

这样就产生了序列ID,序列本身和序列长度。


ENST00000435737.5ATGTTTCGCATCACCAACATTGAGTTTCTTCCCGAATACCGACAAAAGGAGTCCAGGGAATTTCTTTCAGTGTCACGGACTGTGCAGCAAGTGATAAACCTGGTTTATACAACATCTGCCTTCTCCAAATTTTATGAGCAGTCTGTTGTTGCAGATGTCAGCAACAACAAAGGCGGCCTCCTTGTCCACTTTTGGATTGTTTTTGTCATGCCACGTGCCAAAGGCCACATCTTCTGTGAAGACTGTGTTGCCGCCATCTTGAAGGACTCCATCCAGACAAGCATCATAAACCGGACCTCTGTGGGGAGCTTGCAGGGACTGGCTGTGGACATGGACTCTGTGGTACTAAATGAAGTCCTGGGGCTGACTCTCATTGTCTGGATTGACTGA390

我们可以可视化这些DNA序列吗?

是的,我们可以使用Squiggle python库将这些DNA序列可视化,进行操作并运行:


Squiggle example.fa --method=gates

image.png


DNA序列被转换为2D图像,其中T,A,C和G分别在上,下,左和右方位。这给每个序列一个“形状”。

现在,我们来可视化另一个包含6个DNA序列的fasta数据。


Squiggle example.fasta

image.png

在此,首先使用2位编码方案将DNA序列转换为二进制序列,该方案将T映射为00,C映射为01,A映射为10,G映射为11。

现在我们可以轻松加载和操作生物序列数据,那么怎么将数据用于机器学习或深度学习

由于机器学习或深度学习模型要求输入必须是特征矩阵或数字值,但目前我们仍然以字符或字符串格式存储数据。因此,下一步是将这些字符编码为矩阵。

编码序列数据有3种通用方法:

  1. 顺序编码DNA序列
  2. 独热(one-hot)编码DNA序列
  3. DNA序列作为独立“语言”,称为k-mer计数

让我们分别进行实现,看看哪一个为我们提供了完美的输入。

目录
相关文章
|
9月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
343 7
|
7月前
|
机器学习/深度学习 人工智能 算法
Scikit-learn:Python机器学习的瑞士军刀
想要快速入门机器学习但被复杂算法吓退?本文详解Scikit-learn如何让您无需深厚数学背景也能构建强大AI模型。从数据预处理到模型评估,从垃圾邮件过滤到信用风险评估,通过实用案例和直观图表,带您掌握这把Python机器学习的'瑞士军刀'。无论您是AI新手还是经验丰富的数据科学家,都能从中获取将理论转化为实际应用的关键技巧。了解Scikit-learn与大语言模型的最新集成方式,抢先掌握机器学习的未来发展方向!
993 12
Scikit-learn:Python机器学习的瑞士军刀
|
9月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
9月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
机器学习/深度学习 人工智能 自然语言处理
【Python机器学习】文本特征提取及文本向量化讲解和实战(图文解释 附源码)
【Python机器学习】文本特征提取及文本向量化讲解和实战(图文解释 附源码)
864 0
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习】K-Means对文本聚类和半环形数据聚类实战(附源码和数据集)
【Python机器学习】K-Means对文本聚类和半环形数据聚类实战(附源码和数据集)
444 0
|
机器学习/深度学习 算法 数据挖掘
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧1
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
213 5
|
机器学习/深度学习 数据采集 分布式计算
【Python篇】深入机器学习核心:XGBoost 从入门到实战
【Python篇】深入机器学习核心:XGBoost 从入门到实战
1379 3
|
机器学习/深度学习 算法 数据可视化
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧2
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
142 1
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【9月更文挑战第7天】当我们身处数据海洋,如何提炼出有价值的洞察?决策树作为一种直观且强大的机器学习算法,宛如智慧之树,引领我们在繁复的数据中找到答案。通过Python的scikit-learn库,我们可以轻松实现决策树模型,对数据进行分类或回归分析。本教程将带领大家从零开始,通过实际案例掌握决策树的原理与应用,探索数据中的秘密。
161 1

热门文章

最新文章

推荐镜像

更多