在PyTorch中使用Seq2Seq构建的神经机器翻译模型(二)

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 在PyTorch中使用Seq2Seq构建的神经机器翻译模型

4.编码器模型架构(Seq2Seq)

在开始构建seq2seq模型之前,我们需要创建一个Encoder,Decoder,并在seq2seq模型中创建它们之间的接口。

让我们通过德语输入序列“ Ich Liebe Tief Lernen”,该序列翻译成英语“ I love deep learning”。

640.png

LSTM编码器体系结构。X轴对应于时间步长,Y轴对应于批量大小

为了便于说明,让我们解释上图中的过程。Seq2Seq模型的编码器一次只接受一个输入。我们输入的德语单词序列为“ ich Liebe Tief Lernen”。

另外,我们在输入句子的开头和结尾处附加序列“ SOS”的开头和句子“ EOS”标记的结尾。

因此在

  • 在时间步0,发送“ SOS”
  • 在时间步1,发送“ ich”
  • 在时间步2,发送“ Liebe”
  • 在时间步3,发送“ Tief”
  • 在时间步4,发送“ Lernen”
  • 在时间步5,发送“ EOS”

编码器体系结构中的第一个块是单词嵌入层(以绿色块显示),该层将输入的索引词转换为被称为词嵌入的密集向量表示(大小为100/200/300)。

然后我们的词嵌入向量被发送到LSTM单元,在这里它与隐藏状态(hs)组合,并且前一个时间步的单元状态(cs)组合,编码器块输出新的hs和cs到下一个LSTM单元。可以理解,到目前为止,hs和cs捕获了该句子的某些矢量表示。

在时间步0,隐藏状态和单元状态被完全初始化为零或随机数。

然后,在我们发送完所有输入的德语单词序列之后,最终获得上下文向量[以黄色块显示](hs,cs),该上下文向量是单词序列的密集表示形式,可以发送到解码器的第一个LSTM(hs ,cs)进行相应的英语翻译。

在上图中,我们使用2层LSTM体系结构,其中将第一个LSTM连接到第二个LSTM,然后获得2个上下文向量,这些向量堆叠在顶部作为最终输出。

我们必须在seq2seq模型中设计相同的编码器和解码器模块。

以上可视化适用于批处理中的单个句子。

假设我们的批处理大小为5,然后一次将5个句子(每个句子带有一个单词)传递给编码器,如下图所示。

640.png

LSTM编码器的批处理大小为5。X轴对应于时间步长,Y轴对应于批处理大小。

5.编码器代码实现(Seq2Seq)

classEncoderLSTM(nn.Module):
def__init__(self, input_size, embedding_size, hidden_size, num_layers, p):
super(EncoderLSTM, self).__init__()
#Sizeoftheonehotvectorsthatwillbetheinputtotheencoderself.input_size=input_size#OutputsizeofthewordembeddingNNself.embedding_size=embedding_size#DimensionoftheNN's inside the lstm cell/ (hs,cs)'sdimension.
self.hidden_size=hidden_size#Numberoflayersinthelstmself.num_layers=num_layers#Regularizationparameterself.dropout=nn.Dropout(p)
self.tag=True#Shape--------------------> (5376, 300) [inputsize, embeddingdims]
self.embedding=nn.Embedding(self.input_size, self.embedding_size)
#Shape-----------> (300, 2, 1024) [embeddingdims, hiddensize, numlayers]
self.LSTM=nn.LSTM(self.embedding_size, hidden_size, num_layers, dropout=p)
#Shapeofx (26, 32) [Sequence_length, batch_size]
defforward(self, x):
#Shape-----------> (26, 32, 300) [Sequence_length , batch_size , embeddingdims]
embedding=self.dropout(self.embedding(x))
#Shape-->outputs (26, 32, 1024) [Sequence_length , batch_size , hidden_size]
#Shape--> (hs, cs) (2, 32, 1024) , (2, 32, 1024) [num_layers, batch_sizesize, hidden_size]
outputs, (hidden_state, cell_state) =self.LSTM(embedding)
returnhidden_state, cell_stateinput_size_encoder=len(german.vocab)
encoder_embedding_size=300hidden_size=1024num_layers=2encoder_dropout=float(0.5)
encoder_lstm=EncoderLSTM(input_size_encoder, encoder_embedding_size,
hidden_size, num_layers, encoder_dropout).to(device)
print(encoder_lstm)
************************************************OUTPUT************************************************EncoderLSTM(
  (dropout): Dropout(p=0.5, inplace=False)
  (embedding): Embedding(5376, 300)
  (LSTM): LSTM(300, 1024, num_layers=2, dropout=0.5)
)

6.解码器模型架构(Seq2Seq)

640.png

解码器一次也执行单个步骤。

提供来自编码器块的上下文向量,作为解码器的第一个LSTM块的隐藏状态(hs)和单元状态(cs)。

句子“ SOS”令牌的开头被传递到嵌入的NN,然后传递到解码器的第一个LSTM单元,最后,它经过一个线性层[以粉红色显示],该层提供输出的英语令牌预测 概率(4556个概率)[4556 —如英语的总词汇量一样],隐藏状态(hs),单元状态(cs)。

选择4556个值中概率最高的输出单词,将隐藏状态(hs)和单元状态(cs)作为输入传递到下一个LSTM单元,并执行此过程,直到到达句子“ EOS”的结尾 ”。

后续层将使用先前时间步骤中的隐藏状态和单元状态。

除其他块外,您还将在Seq2Seq架构的解码器中看到以下所示的块。

在进行模型训练时,我们发送输入(德语序列)和目标(英语序列)。从编码器获得上下文向量后,我们将它们和目标发送给解码器进行翻译。

但是在模型推断期间,目标是根据训练数据的一般性从解码器生成的。因此,将输出的预测单词作为下一个输入单词发送到解码器,直到获得<EOS>令牌。

因此,在模型训练本身中,我们可以使用 teach force ratio(暂译教力比)控制输入字到解码器的流向。

640.png

我们可以在训练时将实际的目标词发送到解码器部分(以绿色显示)。

我们还可以发送预测的目标词,作为解码器的输入(以红色显示)。

发送单词(实际目标单词或预测目标单词)的可能性可以控制为50%,因此在任何时间步长,在训练过程中都会通过其中一个。

此方法的作用类似于正则化。因此,在此过程中,模型可以快速有效地进行训练。

以上可视化适用于批处理中的单个句子。假设我们的批处理大小为4,然后一次将4个句子传递给编码器,该编码器提供4组上下文向量,它们都被传递到解码器中,如下图所示。

640.png

7.解码器代码实现(Seq2Seq)

classDecoderLSTM(nn.Module):
def__init__(self, input_size, embedding_size, hidden_size, num_layers, p, output_size):
super(DecoderLSTM, self).__init__()
#Sizeoftheonehotvectorsthatwillbetheinputtotheencoderself.input_size=input_size#OutputsizeofthewordembeddingNNself.embedding_size=embedding_size#DimensionoftheNN's inside the lstm cell/ (hs,cs)'sdimension.
self.hidden_size=hidden_size#Numberoflayersinthelstmself.num_layers=num_layers#Sizeoftheonehotvectorsthatwillbetheoutputtotheencoder (EnglishVocabSize)
self.output_size=output_size#Regularizationparameterself.dropout=nn.Dropout(p)
self.tag=True#Shape--------------------> (5376, 300) [inputsize, embeddingdims]
self.embedding=nn.Embedding(self.input_size, self.embedding_size)
#Shape-----------> (300, 2, 1024) [embeddingdims, hiddensize, numlayers]
self.LSTM=nn.LSTM(self.embedding_size, hidden_size, num_layers, dropout=p)
#Shape-----------> (1024, 4556) [embeddingdims, hiddensize, numlayers]
self.fc=nn.Linear(self.hidden_size, self.output_size)
#Shapeofx (32) [batch_size]
defforward(self, x, hidden_state, cell_state):
#Shapeofx (1, 32) [1, batch_size]
x=x.unsqueeze(0)
#Shape-----------> (1, 32, 300) [1, batch_size, embeddingdims]
embedding=self.dropout(self.embedding(x))
#Shape-->outputs (1, 32, 1024) [1, batch_size , hidden_size]
#Shape--> (hs, cs) (2, 32, 1024) , (2, 32, 1024) [num_layers, batch_sizesize, hidden_size] (passingencoder's hs, cs - context vectors)outputs, (hidden_state, cell_state) = self.LSTM(embedding, (hidden_state, cell_state))# Shape --> predictions (1, 32, 4556) [ 1, batch_size , output_size]predictions = self.fc(outputs)# Shape --> predictions (32, 4556) [batch_size , output_size]predictions = predictions.squeeze(0)return predictions, hidden_state, cell_stateinput_size_decoder = len(english.vocab)decoder_embedding_size = 300hidden_size = 1024num_layers = 2decoder_dropout = float(0.5)output_size = len(english.vocab)decoder_lstm = DecoderLSTM(input_size_decoder, decoder_embedding_size,hidden_size, num_layers, decoder_dropout, output_size).to(device)print(decoder_lstm)************************************************ OUTPUT ************************************************DecoderLSTM((dropout): Dropout(p=0.5, inplace=False)(embedding): Embedding(4556, 300)(LSTM): LSTM(300, 1024, num_layers=2, dropout=0.5)(fc): Linear(in_features=1024, out_features=4556, bias=True))

8.Seq2Seq(编码器+解码器)接口

单个输入语句的最终seq2seq实现如下图所示。

  • 提供输入(德语)和输出(英语)句子
  • 将输入序列传递给编码器并提取上下文向量
  • 将输出序列传递给解码器,以及来自编码器的上下文向量,以生成预测的输出序列

640.png

以上可视化适用于批处理中的单个句子。假设我们的批处理大小为4,然后一次将4个句子传递给编码器,该编码器提供4组上下文向量,它们都被传递到解码器中,如下图所示。

640.png



目录
相关文章
|
1月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
165 2
|
3天前
|
并行计算 监控 搜索推荐
使用 PyTorch-BigGraph 构建和部署大规模图嵌入的完整教程
当处理大规模图数据时,复杂性难以避免。PyTorch-BigGraph (PBG) 是一款专为此设计的工具,能够高效处理数十亿节点和边的图数据。PBG通过多GPU或节点无缝扩展,利用高效的分区技术,生成准确的嵌入表示,适用于社交网络、推荐系统和知识图谱等领域。本文详细介绍PBG的设置、训练和优化方法,涵盖环境配置、数据准备、模型训练、性能优化和实际应用案例,帮助读者高效处理大规模图数据。
24 5
|
1月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
55 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
1月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
57 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
2月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
136 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
2月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
43 3
PyTorch 模型调试与故障排除指南
|
1月前
|
存储 并行计算 PyTorch
探索PyTorch:模型的定义和保存方法
探索PyTorch:模型的定义和保存方法
|
29天前
|
人工智能 自然语言处理 NoSQL
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
|
2月前
|
存储 缓存 PyTorch
使用PyTorch从零构建Llama 3
本文将详细指导如何从零开始构建完整的Llama 3模型架构,并在自定义数据集上执行训练和推理。
59 1

热门文章

最新文章