神经机器翻译(NMT)

本文涉及的产品
文本翻译,文本翻译 100万字符
文档翻译,文档翻译 1千页
语种识别,语种识别 100万字符
简介: 神经机器翻译(NMT)

神经机器翻译(Neural Machine Translation, NMT)是一种先进的自然语言处理技术,它利用深度学习中的神经网络架构来实现自动化的源语言到目标语言的翻译。与传统的统计机器翻译(Statistical Machine Translation, SMT)相比,NMT具有以下特点和优势:

  1. 端到端学习:NMT系统通过一个单一的神经网络架构对整个翻译任务进行端到端的学习,不需要像SMT那样构建复杂的多个模块和组件。

  2. 序列到序列学习:NMT模型能够接受整个源语言句子作为输入,并输出整个目标语言句子,它尝试捕捉源句和目标句之间的全局依赖关系,而非仅关注局部词汇或短语匹配。

  3. 词嵌入:NMT使用词嵌入(word embeddings)将单词转换为高维向量,这些向量编码了单词的上下文含义,使得模型可以更好地理解词汇间的相似性和关系。

  4. 注意力机制:在某些NMT模型中,采用了注意力机制(Attention Mechanism),允许模型在生成翻译的过程中动态关注源句子的不同部分,从而提高了翻译的准确性,特别是在处理长句子时效果显著。

  5. 高效训练:虽然NMT训练过程可能需要大量的计算资源和时间,但一旦训练完成,其翻译速度和质量都表现优秀,并且可以随着更多数据和更强大的计算能力的提升持续优化。

  6. 过拟合与泛化:通过反向传播和其他正则化技术,NMT可以学习更复杂的关系模式,减少过拟合,并在未见过的数据上展现出较好的泛化能力。

神经机器翻译已经在实际应用中取得了显著成果,例如谷歌、微软等公司的在线翻译服务就广泛采用了NMT技术,并且不断有新的研究进一步提升其性能,如Transformer模型的应用等。

目录
相关文章
|
机器学习/深度学习 人工智能 自然语言处理
Unsupervised NMT、PBSMT、coarse-to-fine...你都掌握了吗?一文总结机器翻译必备经典模型(3)
Unsupervised NMT、PBSMT、coarse-to-fine...你都掌握了吗?一文总结机器翻译必备经典模型
167 0
|
机器学习/深度学习 自然语言处理 算法
Unsupervised NMT、PBSMT、coarse-to-fine...你都掌握了吗?一文总结机器翻译必备经典模型(1)
Unsupervised NMT、PBSMT、coarse-to-fine...你都掌握了吗?一文总结机器翻译必备经典模型
|
机器学习/深度学习 存储 JSON
在PyTorch中使用Seq2Seq构建的神经机器翻译模型
在PyTorch中使用Seq2Seq构建的神经机器翻译模型
288 1
在PyTorch中使用Seq2Seq构建的神经机器翻译模型
|
机器学习/深度学习 自然语言处理 算法
神经机器翻译的Subword技术
神经机器翻译的Subword技术
138 0
神经机器翻译的Subword技术
|
机器学习/深度学习 自然语言处理 PyTorch
在PyTorch中使用Seq2Seq构建的神经机器翻译模型(三)
在PyTorch中使用Seq2Seq构建的神经机器翻译模型
132 0
在PyTorch中使用Seq2Seq构建的神经机器翻译模型(三)
|
机器学习/深度学习 自然语言处理 数据可视化
在PyTorch中使用Seq2Seq构建的神经机器翻译模型(二)
在PyTorch中使用Seq2Seq构建的神经机器翻译模型
178 0
在PyTorch中使用Seq2Seq构建的神经机器翻译模型(二)
|
机器学习/深度学习 存储 人工智能
NLP教程(6) - 神经机器翻译、seq2seq与注意力机制
本文介绍了序列到序列模型(seq2seq)及其在翻译系统中的应用,以及注意力机制、序列解码器、神经翻译系统、基于字符级别的翻译模型等。
1137 1
NLP教程(6) - 神经机器翻译、seq2seq与注意力机制
|
机器学习/深度学习 自然语言处理 算法
【CS224n】(lecture7)机器翻译NMT,seq2seq和attention
(1)新任务:机器翻译 (2)神经网络结构:sequence to sequence:机器翻译是seq2seq的一个主要应用。 (3)注意力机制:seq2seq通过attention提升。
214 0
【CS224n】(lecture7)机器翻译NMT,seq2seq和attention
|
10月前
|
算法 C语言
算法竞赛入门【码蹄集新手村600题】(MT1200-1220)C语言(三)
算法竞赛入门【码蹄集新手村600题】(MT1200-1220)C语言(三)
230 1
|
10月前
|
机器学习/深度学习 算法 C语言
算法竞赛入门【码蹄集新手村600题】(MT1200-1220)C语言(一)
算法竞赛入门【码蹄集新手村600题】(MT1200-1220)C语言
102 1

相关实验场景

更多