m基于GA遗传优化算法的认知中继网络最优中继功率分配和最佳中继节点选择算法matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: m基于GA遗传优化算法的认知中继网络最优中继功率分配和最佳中继节点选择算法matlab仿真

1.算法概述

1.png

    如图1表示一个潜伏式认知中继网络,在这个场景中有一对主用户和一对次级用户,主用户由一个发射器和一个接收器组成,次级用户由一个发射器、一个接收器和n个中继节点组成。次级用户的认知节点之间没有直接链路,中继节点采用放大转发工作模式。假设场景中涉及到的信道都是相互独立的块衰落信道,也就是说即时功率增益在每个传输块之间是保持不变的,但是当一个传输块变化到另一个传输块时是可能发生改变的。

2.png

   在现有捕获信道状态信息的技术支持下,假设次级用户能够获取完美的信道状态信息,即次级用户发射端和中继节点能通过不同的方法获取信道即时功率增益,从而使次级用户发射端和中继节点能够实现发射功率的最优分配以获得次级用户的最大吞吐量。 

   主用户在通信过程中可以采取不同的发射方案。为了计算的方便,本文假设主用户采用恒定功率的分配方案。为了从总体上保护主用户的通信质量,在主用户接收端考虑一个长时间平均的SINR约束条件。这个约束条件在本文中称为平均SINR约束条件,表述如下:

3.png

   为了保护主用户的实时传输,使其不会因为最大化次级用户的吞吐量而被中断,确保主用户的传输质量,进而保证主用户的业务质量,本文也对主用户接收端的每个传输状态的SINR强加一个约束。这个约束称为谷值SINR约束,表述如下:  

4.png
5.png

    本文的优化标是在平均SINR约束、谷值SINR约束以及平均发射功率约束下,充分的利用共享的频谱资源,获取尽可能大的次级用户吞吐量。 

6.png
7.png
8.png
9.png
10.png
11.png

2.仿真效果预览
matlab2022a仿真结果如下:

12.png
13.png
14.png
15.png
16.png

3.核心MATLAB代码预览

f3   = 2;
%中继节点到次用户接收端功率增益
f4   = 3;
%中继节点到主用户接收端之间的信道即时功率增益
f5   = 3;
%预先确定的主用户能够接受的最小的平均SINR阈值
A1 = 3.6;
A2 = 2.5;
%次级用户发射端和中继节点的平均发射功率预算
Q1 = 3.48;
Q2 = 3.3;
%**************************************************************************
%%
%先确定lemda1,lemda2,lemda3,lemda4
Num     = 2000;
beta1   = zeros(1,Num);
beta2   = zeros(1,Num);
beta3   = zeros(1,Num);
beta4   = zeros(1,Num);
lemdas1 = zeros(1,Num);
lemdas2 = zeros(1,Num);
lemdas3 = zeros(1,Num);
lemdas4 = zeros(1,Num);
lemda1  = 0;
lemda2  = 0;
lemda3  = 0;
lemda4  = 0;
 
for k = 1:Num-1
    %步长的动态调整
    alpha        = 0.15;
    beta1(k)     = alpha*((Num-k+1)/Num)^k;
    beta2(k)     = alpha*((Num-k+1)/Num)^k;
    beta3(k)     = alpha*((Num-k+1)/Num)^k;
    beta4(k)     = alpha*((Num-k+1)/Num)^k;
    lemdas1(k+1) = lemdas1(k) - beta1(k)*(mean((P1*f1)./(P2*f2 + N0))-A1);
    lemdas2(k+1) = lemdas2(k) - beta2(k)*(mean((P1*f1)./(P3*f5 + N0))-A2);
    lemdas3(k+1) = lemdas3(k) - beta3(k)*(Q1 - mean(P2));
    lemdas4(k+1) = lemdas4(k) - beta4(k)*(Q2 - mean(P3));
end
%通过迭代,获得四个lemda
lemda1  = lemdas1(end);
lemda2  = lemdas2(end);
lemda3  = lemdas3(end);
lemda4  = lemdas4(end);
 
figure(1);
plot(lemdas1,'b','linewidth',2);
hold on
plot(lemdas2,'r','linewidth',2);
hold on
plot(lemdas3,'k','linewidth',2);
hold on
plot(lemdas4,'g','linewidth',2);
grid on
legend('lemda1','lemda2','lemda3','lemda4');
xlabel('迭代次数');
ylabel('lemda');
axis([0,Num,-2,2]);
 
%%
%通过优化,计算得到最后最佳的功率分配情况
%先通过遗传优化获得最佳的P2和P3
%**********************首先通过我使用的优化过程计算**************************
%根据中继节点数目,产生每个次用户-中继的信道参数
SNR0 = 15;
SNR  = [8,12,15,20,4,11];
%测试发送数据
Signal = 1e6*rand(1,2);
x      = 2*Signal-1;
 
for jAFN = 1:AFN
    jAFN
    zsnl   = sqrt(1/(10^((SNR(jAFN))/10)));
    zsnl0  = sqrt(1/(10^((SNR0)/10)));
    %如下为需要拟合的参数
    P2o    = 3;
    P3o    = 3;
    %根据遗传算法进行参数的拟合
    MAXGEN = 200;
    NIND   = 600;
    Chrom  = crtbp(NIND,2*10);
    %14个变量的区间
    Areas  = [0  ,0;
              20 ,20];
 
    FieldD = [rep([10],[1,2]);Areas;rep([0;0;0;0],[1,2])];
    P2x_NIND    = zeros(NIND,1);
    P3x_NIND    = zeros(NIND,1);
    P2x         = zeros(MAXGEN,1);
    P3x         = zeros(MAXGEN,1);
    T           = zeros(MAXGEN,1);
    gen         = 0;
 
    for a=1:1:NIND 
        P2x_NIND(a) = P2o;      
        P3x_NIND(a) = P3o;
        %计算对应的目标值
        %计算不同中继点对应的信噪比
        Ysr     = sqrt(P2x_NIND(a)*f3)*x + zsnl*randn;
        Ysd     = sqrt(P3x_NIND(a))/sqrt(P2x_NIND(a)*f3 + N0)*sqrt(f4) * Ysr + zsnl0*randn; 
        Rr      = sum(Ysd.^2)/sum(x.^2); 
        
        L       = func_obj(Rr,mean(P1),P2x_NIND(a),P3x_NIND(a),f1,f2,f3,f4,f5,N0,lemda1,lemda2,lemda3,lemda4);
        E       = 1/L;
        J(a,1)  = E;
    end
    Objv  = (J+eps);
    gen   = 0; 
    while gen < MAXGEN;   
          FitnV=ranking(Objv);    
          Selch=select('sus',Chrom,FitnV);    
          Selch=recombin('xovsp', Selch,0.9);   
          Selch=mut( Selch,0.01);   
          phen1=bs2rv(Selch,FieldD);   
          for a=1:1:NIND  
              if  gen == 1
                  P2x_NIND(a) = P2o;      
                  P3x_NIND(a) = P3o;
              else
                  P2x_NIND(a) = phen1(a,1);      
                  P3x_NIND(a) = phen1(a,2); 
              end
              %计算不同中继点对应的信噪比
              Ysr     = sqrt(P2x_NIND(a)*f3)*x + zsnl*randn;
              Ysd     = sqrt(P3x_NIND(a))/sqrt(P2x_NIND(a)*f3 + N0)*sqrt(f4) * Ysr + zsnl0*randn; 
              Rr      = sum(Ysd.^2)/sum(x.^2); 
              %计算对应的目标值                   
              L       = func_obj(Rr,mean(P1),P2x_NIND(a),P3x_NIND(a),f1,f2,f3,f4,f5,N0,lemda1,lemda2,lemda3,lemda4);                       
              E       = 1/L;
              JJ(a,1) = E;
          end 
          Objvsel=(JJ+eps);    
          [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
          gen=gen+1; 
          %保存参数收敛过程和误差收敛过程以及函数值拟合结论
          P2x(gen)   = mean(P2x_NIND);
          P3x(gen)   = mean(P3x_NIND);
          Ysr     = sqrt(P2x(gen)*f3)*x + zsnl*randn;
          Ysd     = sqrt(P3x(gen))/sqrt(P2x(gen)*f3 + N0)*sqrt(f4) * Ysr + zsnl0*randn; 
          Rr      = sum(Ysd.^2)/sum(x.^2); 
          %计算对应的吞吐量
          T(gen)     = log2(1+Rr);
    end 
    %计算对应的目标值    
    Ysr           = sqrt(P2x(end)*f3)*x + zsnl*randn;
    Ysd           = sqrt(P3x(end))/sqrt(P2x(end)*f3 + N0)*sqrt(f4) * Ysr + zsnl0*randn; 
    Rr            = sum(Ysd.^2)/sum(x.^2); 
    Tp2p3(jAFN)   = log2(1+Rr);
    P2_best(jAFN) = P2x(end);      
    P3_best(jAFN) = P3x(end); 
end
 
%获得最佳中继点
[V,I] = max(Tp2p3);
 
disp('最优中继点:');
I
 
disp('最优功率分配结果:');
P2_best(I)
P3_best(I)
 
disp('吞吐量:');
Tp2p3(I)
01_088_m
相关文章
|
29天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
14天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
15天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
16天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
15天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
15天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
34 3
|
26天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
28天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
1月前
|
算法
基于模糊控制算法的倒立摆控制系统simulink建模与仿真
本课题针对倒立摆模型,使用MATLAB2022a进行模糊控制器Simulink建模,通过调整小车推力控制摆角,实现系统的稳定。倒立摆作为非线性控制的经典案例,利用模糊控制策略提高了系统的鲁棒性和自适应性,确保了小车在特定位置的稳定停留。