【随机分形搜索算法】一种新的全局数值优化的适应度-距离平衡随机分形搜索算法FDB-SFS附matlab代码

简介: 【随机分形搜索算法】一种新的全局数值优化的适应度-距离平衡随机分形搜索算法FDB-SFS附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

随机分形搜索 (SFS) 是一种新的原始元启发式搜索 (MHS) 算法,具有强大的基础。与许多其他 MHS 方法一样,SFS 算法在有效平衡开发-探索方面存在问题。为了达到这种平衡,需要提高其多样性能力。本文介绍了为加强 SFS 算法的多样性和平衡搜索能力而进行的研究。为此,SFS 算法的多样性算子采用一种称为适合度-距离平衡 (FDB) 的新方法设计,该方法更有效地模拟了分形在自然界中发生的方式。因此,具有更强搜索性能的FDBSFS算法应运而生。进行了全面的实验研究以测试和验证开发的基于 FDB 的 SFS 算法 (FDBSFS)。使用了 39 个新颖而强大的 MHS 算法、89 个无约束测试函数和 5 个约束工程问题。两个非参数检验,Wilcoxon 符号秩检验和 Friedman 检验,用于分析从实验研究中获得的结果。分析结果表明,FDB方法的应用在很大程度上消除了早熟收敛的问题,也有效地提供了开发-探索平衡。此外,所提出的 FDBSFS 算法在 39 个竞争算法中排名第一。使用了 89 个无约束测试函数和 5 个约束工程问题。两个非参数检验,Wilcoxon 符号秩检验和 Friedman 检验,用于分析从实验研究中获得的结果。分析结果表明,FDB方法的应用在很大程度上消除了早熟收敛的问题,也有效地提供了开发-探索平衡。此外,所提出的 FDBSFS 算法在 39 个竞争算法中排名第一。使用了 89 个无约束测试函数和 5 个约束工程问题。两个非参数检验,Wilcoxon 符号秩检验和 Friedman 检验,用于分析从实验研究中获得的结果。分析结果表明,FDB方法的应用在很大程度上消除了早熟收敛的问题,也有效地提供了开发-探索平衡。此外,所提出的 FDBSFS 算法在 39 个竞争算法中排名第一。分析结果表明,FDB方法的应用在很大程度上消除了早熟收敛的问题,也有效地提供了开发-探索平衡。此外,所提出的 FDBSFS 算法在 39 个竞争算法中排名第一。分析结果表明,FDB方法的应用在很大程度上消除了早熟收敛的问题,也有效地提供了开发-探索平衡。此外,所提出的 FDBSFS 算法在 39 个竞争算法中排名第一。

⛄ 部分代码

function index = fitnessDistanceBalance( population, fitness )


   [~, bestIndex] = min(fitness);

   best = population(bestIndex, :);

   [populationSize, dimension] = size(population);


   distances = zeros(1, populationSize);

   normFitness = zeros(1, populationSize);

   normDistances = zeros(1, populationSize);

   divDistances = zeros(1, populationSize);


   if min(fitness) == max(fitness)

       index = randi(populationSize);

   else


       for i = 1 : populationSize

           value = 0;

           for j = 1 : dimension

               value = value + abs(best(j) - population(i, j));

           end

           distances(i) = value;

       end


       minFitness = min(fitness); maxMinFitness = max(fitness) - minFitness;

       minDistance = min(distances); maxMinDistance = max(distances) - minDistance;


       for i = 1 : populationSize

           normFitness(i) = 1 - ((fitness(i) - minFitness) / maxMinFitness);

           normDistances(i) = (distances(i) - minDistance) / maxMinDistance;

           divDistances(i) = normFitness(i) + normDistances(i);

       end


       [~, index] = max(divDistances);

   end

end

⛄ 运行结果

⛄ 参考文献

Aras, Sefa, et al. “A Novel Stochastic Fractal Search Algorithm with Fitness-Distance Balance for Global Numerical Optimization.” Swarm and Evolutionary Computation, Elsevier BV, Dec. 2020, p. 100821, doi:10.1016/j.swevo.2020.100821.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关文章
|
1天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
2天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
1天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
1天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
10 3
|
3天前
|
算法 搜索推荐 数据库
二分搜索:高效的查找算法
【10月更文挑战第29天】通过对二分搜索的深入研究和应用,我们可以不断挖掘其潜力,为各种复杂问题提供高效的解决方案。相信在未来的科技发展中,二分搜索将继续发挥着重要的作用,为我们的生活和工作带来更多的便利和创新。
7 1
|
6天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
9天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
12 3
|
7天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
12天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。