【阿旭机器学习实战】【16】KMeans算法介绍及实战:利用KMeans进行足球队分类

简介: 【阿旭机器学习实战】【16】KMeans算法介绍及实战:利用KMeans进行足球队分类

一. 聚类—K均值算法(K-means)介绍


【关键词】K个种子,均值


1. K-means算法原理


聚类的概念:一种无监督的学习,事先不知道类别,自动将相似的对象归到同一个簇中。


K-Means算法是一种聚类分析(cluster analysis)的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。


K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的K-Means算法


a4f690da8a524c9f8a844ed61866505b.png


这个算法其实很简单,如下图所示:


0d21afd04099492a8817bdbc6935228b.png


从上图中,我们可以看到,A,B,C,D,E是五个在图中点。而灰色的点是我们的种子点,也就是我们用来找点群的点。有两个种子点,所以K=2。


然后,K-Means的算法步骤如下:


  1. 随机在图中取K(这里K=2)个种子点。
  2. 然后对图中的所有点求到这K个种子点的距离,假如点Pi离种子点Si最近,那么Pi属于Si点群。(上图中,我们可以看到A,B属于上面的种子点,C,D,E属于下面中部的种子点)
  3. 接下来,我们要移动种子点到属于他的“点群”的中心。(见图上的第三步)
  4. 然后重复第2)和第3)步,直到,种子点没有移动(我们可以看到图中的第四步上面的种子点聚合了A,B,C,下面的种子点聚合了D,E)。


这个算法很简单,重点说一下“求点群中心的算法”:欧氏距离(Euclidean Distance):差的平方和的平方根

4507cf328fee487f8ab8f4c9ffe8002c.png


2. K-Means主要缺陷——都和初始值K有关:


K是事先给定的,这个K值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目K)


K-Means算法需要用初始随机种子点来搞,这个随机种子点太重要,不同的随机种子点会有得到完全不同的结果。(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点)


3. K-Means算法步骤:


  1. 从数据中选择k个对象作为初始聚类中心;
  2. 计算每个聚类对象到聚类中心的距离来划分;
  3. 再次计算每个聚类中心,(求平均)
  4. 计算标准测度函数,直到达到最大迭代次数,则停止,否则,继续操作。
  5. 确定最优的聚类中心


4. K-Means算法应用


看到这里,你会说,K-Means算法看来很简单,而且好像就是在玩坐标点,没什么真实用处。而且,这个算法缺陷很多,还不如人工呢。是的,前面的例子只是玩二维坐标点,的确没什么意思。但是你想一下下面的几个问题:


1)如果不是二维的,是多维的,如5维的,那么,就只能用计算机来计算了。

2)二维坐标点的X,Y 坐标,其实是一种向量,是一种数学抽象。现实世界中很多属性是可以抽象成向量的,比如,我们的年龄,我们的喜好,我们的商品,等等,能抽象成向量的目的就是可以让计算机知道某两个属性间的距离。如:我们认为,18岁的人离24岁的人的距离要比离12岁的距离要近,鞋子这个商品离衣服这个商品的距离要比电脑要近,等等。


二. 聚类算法示例


重要参数:


  • n_clusters:聚类的个数


重要属性:


  • cluster_centers_ : [n_clusters, n_features]的数组,表示聚类中心点的坐标
  • labels_ : 每个样本点的标签


2.1 使用make_blobs生成模型样本


from sklearn import datasets
# 使用make_blobs生成随机点:100个样本,2个分类,2个特征
samples,target = datasets.make_blobs(n_samples=100,centers=2,n_features=2,random_state=0)
import matplotlib.pyplot as plt
%matplotlib inline
# 查看生成的样本
plt.scatter(samples[:,0],samples[:,1],c=target)

426b57d7f1414f2cbd8e491b8bdb91aa.png


2.1 用k-means对以上的100个样本点做聚类划分


from sklearn.cluster import KMeans
# 如果将上面样本划分为3个类别,看此时kMeans是如何划分的,当然此处n_clusters也可以取2
km = KMeans(n_clusters=3)
km
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
    n_clusters=3, n_init=10, n_jobs=1, precompute_distances='auto',
    random_state=None, tol=0.0001, verbose=0)
# 训练
# 无监督学习算法无需标签
km.fit(samples) 
# 这算法在训练阶段,根据km模型,引入相关的种子点,并且确定其位置,
# 并且不断的根据种子点进行聚类划分,直至所有的种子点不在移动
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
    n_clusters=3, n_init=10, n_jobs=1, precompute_distances='auto',
    random_state=None, tol=0.0001, verbose=0)
# 预测
y_ = km.predict(samples)
# 这个预测和监督学习理念不同,经过训练以后,已经把所有的点划分出了对应的聚类,
# 这个方法把这些聚类进行编号,然后输出
y_
array([2, 0, 1, 1, 2, 2, 1, 2, 1, 0, 1, 0, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1,
       2, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 0, 2, 1, 0, 2, 2, 0, 1, 1, 1, 1,
       1, 2, 0, 0, 1, 1, 0, 0, 1, 1, 2, 1, 2, 0, 2, 0, 0, 1, 1, 2, 1, 2,
       1, 2, 2, 1, 1, 0, 2, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1,
       0, 0, 2, 0, 2, 0, 1, 1, 0, 2, 1, 0])
# 求聚类中心点
centers = km.cluster_centers_
centers
array([[1.68009421, 0.44810043],
       [0.78041206, 4.46050581],
       [2.5938845 , 2.15788282]])
plt.scatter(samples[:,0],samples[:,1],c=y_)
plt.scatter(centers[:,0],centers[:,1],c="r")
<matplotlib.collections.PathCollection at 0x26d97ad4710>

e8b66a611cd3491181d1ce7d768f316c.png

图中红色的点点表示3个聚类的中心


三. 聚类实战—依据3年排名进行最球队分类划分


问题描述:通过3年的亚洲球队排名,对亚洲球队做聚类,看看哪几个队属于一类。



3.1 读取数据


import pandas as pd 
• 1
data = pd.read_csv("../data/AsiaZoo.txt",header=None)
data


image.png


上面数据的2-4列,代表各国足球队在某3年世界杯的排名


3.2 提取样本,并用KMeans算法进行分类


# 提取样本
samples = data.iloc[:,1:4]
samples


image.png


# 将足球队分为3类
km = KMeans(n_clusters=3)
• 1
• 2
km.fit(samples)
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
    n_clusters=3, n_init=10, n_jobs=1, precompute_distances='auto',
    random_state=None, tol=0.0001, verbose=0)
y_ = km.predict(samples)
• 1
y_
• 1
array([0, 1, 1, 2, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0])


3.3 查看分类结果


# 打印出3个分类中,各个足球队的名称
for i in range(3):
    items = data[0][y_== i]
    print(items)
0      中国
5     伊拉克
6     卡塔尔
7     阿联酋
9      泰国
10     越南
11     阿曼
14     印尼
Name: 0, dtype: object
1    日本
2    韩国
Name: 0, dtype: object
3         伊朗
4         沙特
8     乌兹别克斯坦
12        巴林
13        朝鲜
Name: 0, dtype: object


通过上面模型分类结果可以看到:

  1. 中国、伊拉克、伊拉克、阿联酋、泰国、越南、阿曼、印尼,为同一分类;
  2. 日本与韩国为一类;
  3. 伊朗、沙特、乌兹别克斯坦、巴林、朝鲜为一类


3.4 模型评估


  1. 轮廓系数: 聚类问题大多数情况下是没有类别的,对于没有标签的一般用轮廓系数来评测聚类的质量,它同时兼顾了聚类凝聚度和离散程度。

     轮廓系数(Silhouette Coefficient)结合了聚类的凝聚度(Cohesion)和分离度(Separation),用于评估聚类的效果。该值处于-1~1之间,值越大,表示聚类效果越好。


  1. ARI指标: (在知道分类的标签数据情况下才能用)ARI指标和监督学习中准确率(score)非常类似,只不过兼顾了聚类的下标与标签数据不能一一对应的问题。

from sklearn import metrics

metrics.adjusted_rand_score(y_,y_test)


在此例中,由于没有标签数据,因此我们使用轮廓系数进行评估


from sklearn import metrics
metrics.silhouette_score(samples, km.labels_)
• 1
• 2
0.5349542135842207
相关文章
|
1月前
|
算法 数据可视化 测试技术
HNSW算法实战:用分层图索引替换k-NN暴力搜索
HNSW是一种高效向量检索算法,通过分层图结构实现近似最近邻的对数时间搜索,显著降低查询延迟。相比暴力搜索,它在保持高召回率的同时,将性能提升数十倍,广泛应用于大规模RAG系统。
135 10
HNSW算法实战:用分层图索引替换k-NN暴力搜索
|
6月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
1月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
1月前
|
机器学习/深度学习 缓存 算法
微店关键词搜索接口核心突破:动态权重算法与语义引擎的实战落地
本文详解微店搜索接口从基础匹配到智能推荐的技术进阶路径,涵盖动态权重、语义理解与行为闭环三大创新,助力商家提升搜索转化率、商品曝光与用户留存,实现技术驱动的业绩增长。
|
3月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
848 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
1月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
2月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
2月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
4月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
6月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。

热门文章

最新文章