机器学习模型可视化的最佳工具(Neptune)

简介: “每个模型都是错误的,但有些模型是有用的”,这句话在机器学习中尤其适用。在开发机器学习模型时,您应该始终了解它在哪里按预期工作以及在哪里失败。您可以使用许多方法来获得这种理解:

“每个模型都是错误的,但有些模型是有用的”,这句话在机器学习中尤其适用。在开发机器学习模型时,您应该始终了解它在哪里按预期工作以及在哪里失败。

您可以使用许多方法来获得这种理解:

  • 查看评估指标(您也应该知道如何为您的问题选择评估指标
  • 查看 ROC、Lift Curve、Confusion Matrix 等性能图表
  • 查看学习曲线以评估过拟合
  • 查看模型对最佳/最坏情况的预测
  • 看看模型训练和推理是如何耗费资源的(它们将转化为严重的成本,对事情的业务方面至关重要)

一旦你对一个模型有了一些不错的理解,你感觉令人满意的,对吗?事实不是这样的。

通常,您需要对模型改进想法进行一些或大量实验,并且可视化各种实验之间的差异变得至关重要。

您可以自己完成所有这些(或大部分)工作,但今天有一些工具可供您使用。如果您正在寻找可以帮助您可视化、组织和收集数据的最佳工具,那么您来对地方了。


1. Neptune

网络异常,图片无法展示
|


Neptune 是 MLOps 生态系统的元数据存储工具,适用于运行大量实验的研究和生产团队。它提供了一个开源库,让用户可以记录模型开发过程中生成的元数据,无论是通过执行脚本(Python、R 等)还是notebooks(本地、Google Colab、AWS SageMaker)。

Neptune 中的项目可以有多个具有不同角色(查看者、贡献者、管理员)的成员,因此每个团队成员都可以查看、共享和讨论 Neptune 中的所有机器学习实验。

Neptune 旨在提供一种简单的方法来存储、组织、显示和比较模型开发过程中生成的所有元数据。

Neptune 总结:

  • 记录模型预测
  • 记录损失(losses)和指标
  • 记录工件(数据版本、模型二进制文件)
  • 记录 git 信息、代码或 notebook checkpoints
  • 记录硬件利用率
  • 训练完成后,在 notebook 中记录错误分析
  • 记录模型表现的可视化,如 ROC 曲线或混淆矩阵(在训练期间或之后)或其他任何东西
  • 记录来自 Altair、Bokeh、Plotly 或其他 HTML 对象的交互式可视化
  • 使用智能比较表比较多次运行的超参数和指标,突出显示不同之处。


2. WandB

网络异常,图片无法展示
|


WandB,亦成称为权重和偏差(Weights & Biases),专注于深度学习。用户可以使用 Python 库跟踪应用程序的实验;并且,作为一个团队,可以看到彼此的实验。

WandB 是一项托管服务,可让您在一个地方备份所有实验并与团队一起开展项目(工作共享功能可供使用)。

在 WandB 中,用户可以记录和分析多种数据类型。

权重和偏差总结


3. Comet.ml

网络异常,图片无法展示
|


Comet 是一个元机器学习平台,用于跟踪、比较、解释和优化实验和模型。

与 Neptune 或 WandB 等许多其他工具一样,Comet 为您提供了一个开源 Python 库,允许数据科学家将他们的代码与 Comet 集成并开始跟踪应用程序中的工作。

由于它同时提供云托管和自托管,用户可以拥有团队项目并保存实验历史的备份。

Comet 通过预测性提前停止(该软件的免费版本不提供)和神经架构搜索(未来),正在向更自动化的 ML 方法靠近。

Comet.ml 总结

  • 使用视觉、音频、文本和表格数据的专用模块可视化样本,以检测过度拟合并轻松识别数据集的问题
  • 您可以自定义和组合您的可视化
  • 您可以监控您的学习曲线
  • Comet 灵活的实验和可视化套件允许您记录、比较和可视化许多工件类型


4. TensorBoard

网络异常,图片无法展示
|


TensorBoard 提供机器学习实验所需的可视化和工具。 它是开源的,并提供了一套用于机器学习模型可视化和调试的工具。 TensorBoard 是市场上最受欢迎的解决方案,因此它与许多其他工具和应用程序广泛集成。

更重要的是,它拥有大量的工程师关系网,他们使用该软件并分享他们的经验和想法。 这使得一个强大的社区随时准备解决任何问题。 然而,该软件本身最适合个人用户。

TensorBoard 总结

  • 跟踪和可视化指标,例如损失和准确率
  • 可视化模型图
  • 查看权重、偏差或其他张量随时间变化的直方图
  • 将embeddings投影到低维空间
  • 显示图像、文本和音频数据
  • 分析 TensorFlow 程序

请参阅 Neptune 和 TensorBoard 之间的深入比较


5. Visdom

网络异常,图片无法展示
|


Visdom 是一个灵活地创建、组织、共享实时可视化、丰富数据的工具。它支持 Torch 和 Numpy。

Visdom 促进了远程数据的可视化,重点是支持科学实验,并具有一组简单的功能,可以针对各种用例进行组合。

Visdom 允许您反映统计计算的结果并与他人共享,方便测试、查看和实验,因为您的所有结果都以交互式形式呈现。

一个轻微的缺点可能是没有简单的方法来访问数据和比较连续运行。

Visdom 总结

  • 它有助于以交互方式可视化任何数据(包括远程机器进行模型训练)
  • 它包含大量的可视化原子。在机器学习模型的上下文中,最有用的是:线图、直方图、散点图、图像、matplotlib 图形、音频、视频、html 对象,但有很多可供选择
  • 可以将各种可视化元素组合成可视化仪表板
  • 它可以轻松地与您的团队或合作者共享
  • 由于您具有完全的可定制性,您可以创建自己喜欢的深度学习仪表板 -> 如此处所述


6. HiPlot

网络异常,图片无法展示
|


Hiplot 是一个简单的交互式可视化工具,可帮助 AI 研究人员发现高维数据中的相关性和模式。 它使用平行图和其他图形方式更清楚地表示信息。

HiPlot 可以从 Jupyter notebook快速运行,无需设置。 该工具使机器学习 (ML) 研究人员能够更轻松地评估其超参数的影响,例如:学习率、正则化和架构。 它也可以被其他领域的研究人员使用,这样他们就可以观察和分析与他们的工作相关的数据的相关性。

HiPlot 总结

  • 创建一个交互式平行图可视化,以轻松探索各种超参数-指标交互
  • 根据平行图上的选择,实验表会自动更新
  • 它超轻量级,可以在 notebooks 内使用或作为独立的网络服务器使用


总结

机器学习模型可视化工具非常重要,因为您的 ML 或深度学习模型的可视化概要可以更轻松地识别趋势和模式、理解关系以及与数据交互。


相关文章
|
2月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
509 109
|
3月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
232 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
3月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
4月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
279 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
4月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
4月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
4月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在舆情分析中的情感倾向判断与话题追踪(185)
本篇文章深入探讨了Java大数据与机器学习在舆情分析中的应用,重点介绍了情感倾向判断与话题追踪的技术实现。通过实际案例,展示了如何利用Java生态工具如Hadoop、Hive、Weka和Deeplearning4j进行舆情数据处理、情感分类与趋势预测,揭示了其在企业品牌管理与政府决策中的重要价值。文章还展望了多模态融合、实时性提升及个性化服务等未来发展方向。
|
17天前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
6月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
12月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1117 6