MySQL批量导入数据时,为何表空间膨胀了N倍

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 本文目录问题缘起排查思路问题发现

问题缘起

同事在客户现场利用DTS工具,从A实例将数据迁移到B实例过程中,发现几乎稍大点的表在迁移完成后,目标端表空间大小差不多都是源端的3倍,也就是说表空间膨胀了2倍。

排查思路

对这篇文章 《叶问》第16期 有印象的话,应该还能记得,数据迁移(导入导出)过程中,也包括主从复制场景,导致表空间膨胀的原因有几种:

  1. MySQL表默认是InnoDB引擎且目前索引只支持B+树索引,在数据的增删改过程中,会因为page分裂而导致表产生碎片,主从服务器上同张表的碎片率不同也会导致表空间相差很大。
  2. 主库整理过碎片(相当于重建整表),从库则是从原先的未整理的物理备份中恢复出来的。
  3. 两端表结构不一致,如从库可能比主库多索引。
  4. 两端表的行格式不一致,如主库为dynamic,从库为compressed。
  5. 两端字符集不同,例如源端是latin1,目标端是utf8mb4。
  6. 个别云数据库在从库上可能采用特殊的并行复制技术,导致在从库上有更高的碎片率(有个极端的案例,同一个表在主库只有6G,从库上则有将近150G)。
  7. 数据表上没有自增ID作为主键,数据写入随机离散,page频繁分裂造成碎片率很高。

问题发现

顺着上面的思路,逐一排查,看能否定位问题原因。

  1. 因素1,不存在,这是全量迁移场景,不是在日常随机增删改的过程中导致膨胀的。
  2. 因素2,不存在,这是利用DTS工具迁移数据的场景。
  3. 因素3、4、5,不存在,两边表结构一致。
  4. 因素6,不存在,原因同2。
  5. 因素7,不存在,每个表都有自增ID作为主键。

排查到这里,就显得有点诡异了,似乎遇到了玄学问题。不过没关系,我们还需要先了解DTS工具的工作方式,大致如下:

  1. 计算数据表总行数。
  2. 根据batch size,分成多段并行读取数据;例如总共10000行数据,batch size是1000,则总共分为10次读取数据。
  3. 将读取出来的数据拼接成 INSERT...VALUES...ON DUPLICATE KEY UPDATE,因为DTS工具要支持增量迁移数据,所以才加上 ON DUPLICATE KEY UPDATE 子句。
  4. 将拼接后的SQL并行写入到目标端。

初看上述工作过程,似乎也没什么特别之处会导致数据写入后产生大量碎片,从而表空间文件急剧膨胀。

首先,读取数据阶段只涉及到源端,可以先排除了。所以,疑点集中在第3、4两步。

了解InnoDB引擎特点的话应该知道,当InnoDB表有自增ID作为主键时,如果写入的数据总是顺序递增的话,那么产生碎片的概率就会很低。但是,如果写入的数据是离散化的(比如插入的顺序是随机离散的,或者比如插入顺序为1、10000、2、3000、3、5000...这种完全离散无序的),则有极大可能会造成碎片率很高。

按照上述疑点,我们需要确认DTS工具构造的SQL是什么样的,这就需要修改选项 binlog_format = statement,这是为了获取其原生的SQL,row模式下可能就相对不好排查了。然后再次运行DTS工具,查看生成的SQL。

经过排查,终于发现问题所在,原来是DTS工具在拼接SQL时,虽然是分段读取数据,但没有将读取出来的结果集先行排序,造成了拼接后的SQL大概像下面这样的:

INSERT INTO t VALUES (100, ...), (99, ...), (98, ...)...(1, ...);

这种方式写入的话,而且还是并发写入,就会极大概率造成InnoDB data page频繁分裂,所以表空间文件才膨胀到原来的3倍之巨。原因不难理解,就好比排队机制,本来我们是按照身高顺序排,但现在有几位高个子的先排在前面了,那么后来的每次都要让这几个人频繁往后移动才行,这就造成了data page分裂,产生大量碎片。

我用几万条sysbench标准表做测试,采用这种方式写入的话,大概会造成约20%的表空间膨胀率。

问题已然明确,只需要在读取数据拼接插入SQL这个阶段,先行对结果集进行排序,就可以完美解决这个问题了

并顺手给负责SQL优化器的同学提了个feature request(MySQL bug#109087),希望能在遇到上述倒序INSERT的情况下,自动完成SQL改写,改倒序为正序(或者说,INSERT的顺序和表主键定义的顺序一致,通常都是正序的INT),也就可以完美避开这类风险了。

全文完。

Enjoy MySQL :




文章推荐:


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1月前
|
关系型数据库 MySQL Java
【MySQL+java+jpa】MySQL数据返回项目的感悟
【MySQL+java+jpa】MySQL数据返回项目的感悟
44 1
|
30天前
|
安全 关系型数据库 MySQL
如何将数据从MySQL同步到其他系统
【10月更文挑战第17天】如何将数据从MySQL同步到其他系统
168 0
|
1月前
|
SQL 前端开发 关系型数据库
全表数据核对 ,行数据核对,列数据核对,Mysql 8.0 实例(sample database classicmodels _No.3 )
全表数据核对 ,行数据核对,列数据核对,Mysql 8.0 实例(sample database classicmodels _No.3 )
49 0
全表数据核对 ,行数据核对,列数据核对,Mysql 8.0 实例(sample database classicmodels _No.3 )
|
1月前
|
关系型数据库 MySQL 数据库
mysql 里创建表并插入数据
【10月更文挑战第5天】
121 1
|
1月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
50 3
|
12天前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
本文介绍了MySQL InnoDB存储引擎中的数据文件和重做日志文件。数据文件包括`.ibd`和`ibdata`文件,用于存放InnoDB数据和索引。重做日志文件(redo log)确保数据的可靠性和事务的持久性,其大小和路径可由相关参数配置。文章还提供了视频讲解和示例代码。
119 11
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
|
12天前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
在项目中,为了解决Redis与Mysql的数据一致性问题,我们采用了多种策略:对于低一致性要求的数据,不做特别处理;时效性数据通过设置缓存过期时间来减少不一致风险;高一致性但时效性要求不高的数据,利用MQ异步同步确保最终一致性;而对一致性和时效性都有高要求的数据,则采用分布式事务(如Seata TCC模式)来保障。
47 14
|
12天前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的表空间
InnoDB是MySQL默认的存储引擎,主要由存储结构、内存结构和线程结构组成。其存储结构分为逻辑和物理两部分,逻辑存储结构包括表空间、段、区和页。表空间是InnoDB逻辑结构的最高层,所有数据都存放在其中。默认情况下,InnoDB有一个共享表空间ibdata1,用于存放撤销信息、系统事务信息等。启用参数`innodb_file_per_table`后,每张表的数据可以单独存放在一个表空间内,但撤销信息等仍存放在共享表空间中。
|
15天前
|
SQL 前端开发 关系型数据库
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
46 9
|
26天前
|
SQL Java 关系型数据库
java连接mysql查询数据(基础版,无框架)
【10月更文挑战第12天】该示例展示了如何使用Java通过JDBC连接MySQL数据库并查询数据。首先在项目中引入`mysql-connector-java`依赖,然后通过`JdbcUtil`类中的`main`方法实现数据库连接、执行SQL查询及结果处理,最后关闭相关资源。
下一篇
无影云桌面