云原生|kubernetes|集群网络优化之启用ipvs(二)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 云原生|kubernetes|集群网络优化之启用ipvs

四,修改kube-proxy的配置文件


二进制方式安装部署的集群:

最后加一段mode: "ipvs"即可,如果想修改lvs的算法,scheduler: "" 这里是lvs的调度算法,默认是rr,当然也可以改成wrr或者sh等等其它算法,看自己需要啦。

[root@slave1 cfg]# cat kube-proxy-config.yml 
kind: KubeProxyConfiguration
apiVersion: kubeproxy.config.k8s.io/v1alpha1
bindAddress: 0.0.0.0
metricsBindAddress: 0.0.0.0:10249
clientConnection:
  kubeconfig: /opt/kubernetes/cfg/kube-proxy.kubeconfig
hostnameOverride: k8s-node1
clusterCIDR: 10.0.0.0/24
mode: "ipvs"
ipvs:
      excludeCIDRs: null
      minSyncPeriod: 0s
      scheduler: "wrr"
      strictARP: false
      syncPeriod: 0s
      tcpFinTimeout: 0s
      tcpTimeout: 0s
      udpTimeout: 0s

然后重启服务:

systemctl restart kube-proxy

此时的网络状态:

[root@master cfg]# k get svc -A
NAMESPACE     NAME         TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)         AGE
default       kubernetes   ClusterIP   10.0.0.1     <none>        443/TCP         30d
kube-system   coredns      ClusterIP   10.0.0.2     <none>        53/UDP,53/TCP   29d

多了一个kube-pivs0网卡,现有多少个service都写上面了。

[root@slave1 cfg]# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host 
       valid_lft forever preferred_lft forever
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000
    link/ether 00:0c:29:e9:9e:89 brd ff:ff:ff:ff:ff:ff
    inet 192.168.217.17/24 brd 192.168.217.255 scope global ens33
       valid_lft forever preferred_lft forever
    inet6 fe80::20c:29ff:fee9:9e89/64 scope link 
       valid_lft forever preferred_lft forever
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN 
    link/ether 02:42:fa:3e:c9:3f brd ff:ff:ff:ff:ff:ff
    inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
       valid_lft forever preferred_lft forever
4: dummy0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN qlen 1000
    link/ether e2:7b:0c:50:67:28 brd ff:ff:ff:ff:ff:ff
5: kube-ipvs0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN 
    link/ether 4a:05:45:0b:b0:bc brd ff:ff:ff:ff:ff:ff
    inet 10.0.0.1/32 brd 10.0.0.1 scope global kube-ipvs0
       valid_lft forever preferred_lft forever
    inet 10.0.0.2/32 brd 10.0.0.2 scope global kube-ipvs0
       valid_lft forever preferred_lft forever

查看一哈日志:

这个时候的日志告诉我们,ipvs调度模式(也叫做算法)没有指定,因此,使用的轮询rr模式作为默认,OK,这样就已经基本可以满足大集群的使用了。

[root@slave1 cfg]# cat ../logs/kube-proxy.slave1.root.log.WARNING.20220926-102105.4110
Log file created at: 2022/09/26 10:21:05
Running on machine: slave1
Binary: Built with gc go1.13.9 for linux/amd64
Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg
W0926 10:21:05.426300    4110 proxier.go:429] IPVS scheduler not specified, use rr by default

cat kube-proxy.INFO  ipvs相关日志:

I0926 13:06:32.992903   14326 server_others.go:259] Using ipvs Proxier.
I0926 13:06:32.993480   14326 proxier.go:426] nodeIP: 192.168.217.17, isIPv6: false
I0926 13:06:32.993907   14326 server.go:583] Version: v1.18.3
I0926 13:06:32.994533   14326 conntrack.go:52] Setting nf_conntrack_max to 262144

kubeadm方式部署的集群:

scheduler: "" 这里是lvs的调度算法,默认是rr,当然也可以改成wrr或者sh等等其它算法,看自己需要啦。

kubectl edit configmap kube-proxy -n kube-system
ipvs:
      excludeCIDRs: null
      minSyncPeriod: 0s
      scheduler: ""
      strictARP: false
      syncPeriod: 0s
      tcpFinTimeout: 0s
      tcpTimeout: 0s
      udpTimeout: 0s
    kind: KubeProxyConfiguration
    metricsBindAddress: ""
    mode: "ipvs"     #修改此处
    nodePortAddresses: null

然后删除kube-proxy相关的pod以重启pod即可:

kubectl get pod -n kube-system
kubectl delete pod kube-proxy-5ntj4 kube-proxy-82dk4 kube-proxy-s9jrw  -n kube-system

查看pod日志,日志出现Using ipvs Proxier即可

确认是否成功操作,如下,列出了service的IP即为正确(当然,算法也列出来了,具体算法百度即可。):

[root@slave1 cfg]# ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  10.0.0.1:443 rr
  -> 192.168.217.16:6443          Masq    1      0          0         
TCP  10.0.0.2:53 rr
  -> 10.244.0.22:53               Masq    1      0          0         
UDP  10.0.0.2:53 rr
  -> 10.244.0.22:53               Masq    1      0          0   

OK,kubernetes集群启用ipvs(lvs)就成功了,别忘记了,所有的kube-proxy都要修改的哦,如果是二进制安装的话

安装完ipvs后的一个错误解决:云原生|kubernetes|解决kube-proxy报错:Not using `--random-fully` in the MASQUERADE rule for iptables_zsk_john的博客-CSDN博客

也就是升级一哈iptables(内核都升级了,ipvs相关的iptables也需要来一哈嘛)

最后,在kubernetes之前的版本中,需要通过设置特性开关SupportIPVSProxyMode来使用IPVS。在kubernetes v1.10版本中,特性开关SupportIPVSProxyMode默认开启,在1.11版本中该特性开关已经被移除。但是如果您使用kubernetes 1.10之前的版本,需要通过--feature-gates=SupportIPVSProxyMode=true开启SupportIPVSProxyMode才能正常使用IPVS

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
14天前
|
人工智能 弹性计算 运维
ACK Edge与IDC:高效容器网络通信新突破
本文介绍如何基于ACK Edge以及高效的容器网络插件管理IDC进行容器化。
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
105 80
|
4天前
|
存储 Kubernetes 开发者
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
Docker 是一种开源的应用容器引擎,允许开发者将应用程序及其依赖打包成可移植的镜像,并在任何支持 Docker 的平台上运行。其核心概念包括镜像、容器和仓库。镜像是只读的文件系统,容器是镜像的运行实例,仓库用于存储和分发镜像。Kubernetes(k8s)则是容器集群管理系统,提供自动化部署、扩展和维护等功能,支持服务发现、负载均衡、自动伸缩等特性。两者结合使用,可以实现高效的容器化应用管理和运维。Docker 主要用于单主机上的容器管理,而 Kubernetes 则专注于跨多主机的容器编排与调度。尽管 k8s 逐渐减少了对 Docker 作为容器运行时的支持,但 Doc
30 5
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
|
11天前
|
机器学习/深度学习 算法 PyTorch
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
本文探讨了图神经网络(GNN)与大型语言模型(LLM)结合在知识图谱问答中的应用。研究首先基于G-Retriever构建了探索性模型,然后深入分析了GNN-RAG架构,通过敏感性研究和架构改进,显著提升了模型的推理能力和答案质量。实验结果表明,改进后的模型在多个评估指标上取得了显著提升,特别是在精确率和召回率方面。最后,文章提出了反思机制和教师网络的概念,进一步增强了模型的推理能力。
34 4
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
|
4天前
|
Kubernetes 网络协议 应用服务中间件
Kubernetes Ingress:灵活的集群外部网络访问的利器
《Kubernetes Ingress:集群外部访问的利器-打造灵活的集群网络》介绍了如何通过Ingress实现Kubernetes集群的外部访问。前提条件是已拥有Kubernetes集群并安装了kubectl工具。文章详细讲解了Ingress的基本组成(Ingress Controller和资源对象),选择合适的版本,以及具体的安装步骤,如下载配置文件、部署Nginx Ingress Controller等。此外,还提供了常见问题的解决方案,例如镜像下载失败的应对措施。最后,通过部署示例应用展示了Ingress的实际使用方法。
18 2
|
8天前
|
域名解析 缓存 网络协议
优化Lua-cURL:减少网络请求延迟的实用方法
优化Lua-cURL:减少网络请求延迟的实用方法
|
7天前
|
数据采集 监控 安全
公司网络监控软件:Zig 语言底层优化保障系统高性能运行
在数字化时代,Zig 语言凭借出色的底层控制能力和高性能特性,为公司网络监控软件的优化提供了有力支持。从数据采集、连接管理到数据分析,Zig 语言确保系统高效稳定运行,精准处理海量网络数据,保障企业信息安全与业务连续性。
31 4
|
25天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
66 7
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
1月前
|
Kubernetes Cloud Native 微服务
云原生入门与实践:Kubernetes的简易部署
云原生技术正改变着现代应用的开发和部署方式。本文将引导你了解云原生的基础概念,并重点介绍如何使用Kubernetes进行容器编排。我们将通过一个简易的示例来展示如何快速启动一个Kubernetes集群,并在其上运行一个简单的应用。无论你是云原生新手还是希望扩展现有知识,本文都将为你提供实用的信息和启发性的见解。

推荐镜像

更多