python使用SVM(支持向量机)解决非线性分类问题

简介: python使用SVM(支持向量机)解决非线性分类问题

很多问题使用线性SVM分类器就能有效处理,但实际上也存在很多非线性问题,数据集无法进行线性划分,处理非线性数据集的方法之一是添加更多特征,比如多项式,添加新特征后,数据集维度更高,能够形成一个划分超平面。


下面使用SVC(SVM中的分类算法)处理K-means聚类无法解决的半环形moons数据集的分类问题


Piplline()函数能够对三个函数模块进行封装,将前一个函数的结果传递个下一个函数,


结果可视化如下

1666430931745.jpg

可以看出 SVC模型可以将半环形数据集进行准确的划分,从而解决了K-means中仅仅依靠距离进行分类的局限性,因此,对于非线性问题来说,SVM提供了崭新的思路和良好的解决方案!


源代码如下

import  numpy as np
import  matplotlib.pyplot as plt
from sklearn.datasets import  make_moons
from sklearn.preprocessing import  PolynomialFeatures
from sklearn.preprocessing import  StandardScaler
from sklearn.svm import  LinearSVC
from  sklearn.pipeline import Pipeline
x,y=make_moons(n_samples=100,noise=0.1,random_state=1)
moonAxe=[-1.5,2.5,-1,1.5]
def disdata(x,y,moonAxe):
    pos_x0=  [x[i,0] for i in range(len(y))if  y[i]==1]
    pos_x1 = [x[i,1] for i in range(len(y)) if y[i]==1]
    neg_x0 = [x[i,0] for i in range(len(y)) if y[i]==0]
    neg_x1 = [x[i,1] for i in range(len(y)) if y[i]==0]
    plt.plot(pos_x0,pos_x1,"bo")
    plt.plot(neg_x0,neg_x1,"r^")
    plt.axis(moonAxe)
    plt.xlabel('x')
    plt.ylabel('y')
def dispPredict(clf,moonAxe):
    d0=np.linspace(moonAxe[0],moonAxe[1],200)
    d1= np.linspace(moonAxe[2], moonAxe[3], 200)
    x0,x1=np.meshgrid(d0,d1)
    X=np.c_[x0.ravel(),x1.ravel()]
    y_pred=clf.predict(X).reshape(x0.shape)
    plt.contourf(x0,x1,y_pred,alpha=0.8)
disdata(x,y,moonAxe)
polynomial_svm_clf=Pipeline(
    (("multifeature",PolynomialFeatures(degree=3)),
     ("numscale",StandardScaler()),
     ("SVC",LinearSVC(C=100)))
)
polynomial_svm_clf.fit(x,y)
dispPredict(polynomial_svm_clf,moonAxe)
plt.title('Linear svm classifies moon data')
plt.show()
相关文章
|
3月前
|
Python
Python办公自动化:xlwings对Excel进行分类汇总
Python办公自动化:xlwings对Excel进行分类汇总
98 1
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
【python】python当当数据分析可视化聚类支持向量机预测(源码+数据集+论文)【独一无二】
【python】python当当数据分析可视化聚类支持向量机预测(源码+数据集+论文)【独一无二】
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
54 3
|
3月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
101 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
2月前
|
安全 Python
Python脚本实现IP按段分类
【10月更文挑战第04天】
29 7
|
2月前
|
存储 Python 容器
Python 对象有哪几种,我们可以从哪些角度进行分类呢?
Python 对象有哪几种,我们可以从哪些角度进行分类呢?
17 1
|
3月前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【9月更文挑战第12天】决策树算法作为机器学习领域的一颗明珠,凭借其直观易懂和强大的解释能力,在分类与回归任务中表现出色。相比传统统计方法,决策树通过简单的分支逻辑实现了数据的精准分类。本文将借助Python和scikit-learn库,以鸢尾花数据集为例,展示如何使用决策树进行分类,并探讨其优势与局限。通过构建一系列条件判断,决策树不仅模拟了人类决策过程,还确保了结果的可追溯性和可解释性。无论您是新手还是专家,都能轻松上手,享受机器学习的乐趣。
52 9
|
3月前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
54 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
4月前
|
数据采集 机器学习/深度学习 算法
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
|
4月前
|
机器学习/深度学习 数据采集 算法
【python】python基于微博互动数据的用户类型预测(随机森林与支持向量机的比较分析)(源码+数据集+课程论文)【独一无二】
【python】python基于微博互动数据的用户类型预测(随机森林与支持向量机的比较分析)(源码+数据集+课程论文)【独一无二】