Spark Codegen浅析
Codegen是Spark Runtime优化性能的关键技术,核心在于动态生成java代码、即时compile和加载,把解释执行转化为编译执行。Spark Codegen分为Expression级别和WholeStage级别,分别针对表达式计算和全Stage计算做代码生成,都取得了数量级的性能提升。本文浅析Spark Codegen技术原理。
自适应查询执行AQE:在运行时加速SparkSQL
SPARK+AI SUMMIT 2020中文精华版线上峰会将会带领大家一起回顾2020年的SPARK又产生了怎样的最佳实践,技术上取得了哪些突破,以及周边的生态发展。本文是阿里巴巴云智能平台事业部王道远关于Spark3.0中自适应查询执行(AQE)的相关介绍。以下由Spark+AI Summit中文精华版峰会的精彩内容整理。
Delta Lake在Soul的应用实践
传统离线数仓模式下,日志入库前首要阶段便是ETL,我们面临如下问题:天级ETL任务耗时久,影响下游依赖的产出时间;凌晨占用资源庞大,任务高峰期抢占大量集群资源;ETL任务稳定性不佳且出错需凌晨解决、影响范围大。为了解决天级ETL逐渐尖锐的问题,所以这次我们选择了近来逐渐进入大家视野的数据湖架构,基于阿里云EMR的Delta Lake,我们进一步打造优化实时数仓结构,提升部分业务指标实时性,满足更多更实时的业务需求。
《 Delta Lake 数据湖专题系列5讲》文章回顾
《Delta Lake 数据湖专题系列5讲》由阿里云 DDI 团队翻译整理自大数据技术公司 Databricks 针对数据湖 Delta Lake 系列技术文章。阅读完此系列文章可以帮助您达到入门级,对数据湖 Lakehouse 有整体上的认识和应用,掌握理论知识体系。