开源大数据平台 E-MapReduce

首页 标签 开源大数据平台 E-MapReduce
# 开源大数据平台 E-MapReduce #
关注
1607内容
基于web漏洞扫描及分析系统设计_kaic
随着信息技术的发展和网络应用在我国的普及,针对我国境内信息系统的恶意网络攻击也越来越多,并且随着黑客攻击技术的不断地更新,网络犯罪行为变得越来越难以应对,用户日常访问的网站是否安全对于普通网民而言难以辨别,保护人民不受不法侵害也是难上加难。如何识别网站的潜在危险性,以及网站出现安全性问题该如何防御,尽可能减少网站被攻击后造成的实际损失,是目前迫切需要解决的难题。 本文使用VMware虚拟机技术模拟真实的网络环境,使用渗透测试技术对模拟网络进行薄弱点测试信息收集、攻击测试等,再现了渗透测试的重要流程和技术方法。在对目标主机实施渗透测试时,会从系统层面和Web层面两个维度进行测试,扫描出存在的漏洞
在E-MapReduce集群内运行Spark GraphX作业
Spark GraphX是一个比较流行的图计算框架,如果你使用了阿里云的E-MapReduce服务,可以很方便的运行图计算的作业。 下面以PageRank为例,看看如何运行GraphX作业
|
6月前
| |
StarRocks + Paimon 在阿里集团 Lakehouse 的探索与实践
阿里集团在推进湖仓一体化建设过程中,依托 StarRocks 强大的 OLAP 查询能力与 Paimon 的高效数据入湖特性,实现了流批一体、存储成本大幅下降、查询性能数倍提升的显著成效: A+ 业务借助 Paimon 的准实时入湖,显著降低了存储成本,并引入 StarRocks 提升查询性能。升级后,数据时效提前60分钟,开发效率提升50%;JSON列化存储减少50%,查询性能提升最高达10倍;OLAP分析中,非JOIN查询快1倍,JOIN查询快5倍。 饿了么升级为准实时Lakehouse架构后,在时效性仅损失1-5分钟的前提下,实现Flink资源缩减、StarRocks查询性能提升(仅5%
通过可视化更好的了解你的Spark应用
图的最大价值是它会推动我们去注意到那些我们从未预料到的东西。 – John Tukey Spark 1.4中对Spark UI进行改进,更加突出可视化的效果。我们来看一下他的主要的改动,主要包含三个方面: Spark事件的时间线视图 执行的DAG图 Spark Streaming 的可视化
通过ZeppelinHub viewer来分享zeppelin的notebook和报表数据
最近有使用E-MapReduce的同学咨询如果将zeppelin中的表表数据进行共享。这里就介绍一下在Aliyun E-MapReduce的集群中使用ZeppelinHub来进行notebook和报表的分享。
hive在E-MapReduce集群的实践(二)集群hive参数优化
本文介绍一些常见的集群跑hive作业参数优化,可以根据业务需要来使用。 提高hdfs性能 修改hdfs-site,注意重启hdfs服务 dfs.client.read.shortcircuit=true //直读 dfs.
免费试用