分布式快照算法: Chandy-Lamport
Spark 的 Structured Streaming 的 Continuous Processing Mode 的容错处理使用了分布式快照(Distributed Snapshot)算法 Chandy-Lamport 算法,那么分布式快照算法可以用来解决什么问题呢?
浅谈 Spark 的多语言支持
Spark架构和设计上的优秀毋庸置疑,从一出道便抢了 Hadoop 的 C 位。在开源大数据的黄金十年一时风头无两,在当下人工智能时代仍然能够与时俱进,通天之处不遑多言,美中不足之处也有不少。小的方面,比如调度模型跟 MapReduce 这种计算范式过于耦合,Spark 最近引入 Barrier 调度模式就是为了支持深度学习这种新的计算类型,所幸在于对框架的改动不会伤筋动骨;有些缺陷则不然,影响全局,调整起来绝非易事。
使用Relational Cache加速EMR Spark数据分析
Relational Cache的强大功能赋予了Spark更多的可能,通过Relational Cache,用户可以提前将任意关系型数据(Table/View/Dataset)cache到任意Spark支持的DataSource中,并支持灵活的cache数据组织方式,基于此,Relational Cache可以在诸多应用场景中帮助用户加速Spark数据分析。
列式存储系列(二): Vertica
本文就 Vertica 的数据模型、存储、执行引擎以及这几个方面与 C-Store 的区别进行了简单的介绍。总的来说,Vertica 是一个纯正的列式存储数据库,为此,Vertica 设计实现了 projection 这一数据模型,并围绕该模型设计实现了一套大数据分析管理引擎。
E-MapReduce 4.0产品新特性
E-MapReduce是运行在阿里云平台上的一大数据处理的系统解决方案。在2019年10月,阿里巴巴将发布EMR4.0版本。本篇介绍EMR4.0的新特性,包括在EMR基础能力,技术栈,生态集成和数据迁移等方面的升级,EMR4.0为用户提供更高的计算性能和更低的产品价格,将技术的红利让给用户。