机器学习/深度学习

首页 标签 机器学习/深度学习
# 机器学习/深度学习 #
关注
69365内容
【玩转数据系列六】文本分析算法实现新闻自动分类
新闻分类是文本挖掘领域较为常见的场景。目前很多媒体或是内容生产商对于新闻这种文本的分类常常采用人肉打标的方式,消耗了大量的人力资源。本文尝试通过智能的文本挖掘算法对于新闻文本进行分类。无需任何人肉打标,完全由机器智能化实现。
| |
来自: 云原生
树莓派 + Docker - 轻松实现人脸识别应用
人脸识别技术已经被广泛应用在众多场景中。今天我们将利用Docker容器在树莓派上快速打造一个人脸识别应用。
诠释数据降维算法:一文讲尽t-分布邻域嵌入算法(t-SNE)如何有效利用
t-分布领域嵌入算法(t-SNE, t-distributed Stochastic Neighbor Embedding )是目前一个非常流行的对高维度数据进行降维的算法, 由Laurens van der Maaten和 Geoffrey Hinton于2008年提出。这个算法已经在机器学习领域
深度学习训练,选择P100就对了
本文使用NVCaffe、MXNet、TensorFlow三个主流开源深度学习框架对P100和P40做了图像分类场景的卷积神经网络模型训练的性能对比,并给出了详细分析,结论是P100比P40更适合深度学习训练场景。
对比解读五种主流大数据架构的数据分析能力
数据分析工作虽然隐藏在业务系统背后,但是具有非常重要的作用,数据分析的结果对决策、对业务发展有着举足轻重的作用。
| |
来自: 云原生
利用TFRecord和HDFS准备TensorFlow训练数据
本文将介绍如何将数据转化为TFRecord格式,并且将生成TFRecord文件保存到HDFS中, 这里我们直接使用的是阿里云EMR(E-MapReduce)的HDFS服务。
阿里知识图谱首次曝光:每天千万级拦截量,亿级别全量智能审核
借助阿里知识图谱的建设,阿里电商平台管控从过去的“巡检”模式升级为发布端实时逐一检查。在海量的商品发布量的挑战下,最大可能地借助大数据、人工智能阻止坏人、问题商品进入阿里生态。同时面临问题商家实时的对弈、变异和恶意攻击等诸多挑战,知识图谱仍然保持着每天千万级别的拦截量,亿级别的全量智能审核次数,在滥发、侵权、合规、假货、经营范围等多个场景全面与问题卖家正面交锋,实时对弈。
用Streamlit开发机器学习UI
Streamlit是第一个专门针对机器学习和数据科学团队的应用开发框架,它是开发自定义机器学习工具的最快的方法,你可以认为它的目标是取代Flask在机器学习项目中的地位,可以帮助机器学习工程师快速开发用户交互工具。
【云周刊】第126期:硬货!云存储成本到底省在哪儿
终于搞明白,存储TCO原来是这样算的!机器学习奠基人告诉你人类到底将如何受到AI威胁;阿里云数加产品家族图首次亮相……更多精彩技术资讯,尽在云周刊!
免费试用