《生成式引擎优化(GEO)服务商选择指南》:让AI大模型主动推荐你
GEO(生成式引擎优化)是针对AI生成式搜索引擎的优化策略,旨在让企业信息在AI回答中优先呈现,实现“无点击曝光”。与传统SEO不同,GEO强调语义理解、权威内容和结构化数据,提升品牌在AI推荐中的可见性与可信度。企业需关注GEO服务商的技术实力、行业匹配度、服务流程完整性等维度,确保优化效果。
国产AI封神!炒股狂赚40%碾压对手 教你微调Qwen3打造专属金融分析师
国产AI在实盘炒股中大放异彩,DeepSeek与Qwen3收益率最高超60%,碾压国际大模型。本文教你用LLaMA Factory平台微调Qwen3-VL-30B,打造专属多模态金融分析师,实现趋势研判、财报分析等专业能力,赋能投资决策。
精通RAG:从“能用”到“好用”的进阶优化与评估之道
你的RAG应用是否总是答非所问,或者检索到的内容质量不高?本文聚焦于RAG系统的进阶优化,深入探讨从查询转换、多路召回与重排序(Rerank)等高级检索策略,到知识库构建的最佳实践。更重要的是,我们将引入强大的`Ragas`评估框架,教你如何用数据驱动的方式,科学地量化和提升你的RAG系统性能。
要不要做算法、大模型备案?看这个流程图就明白了!
本文详解算法备案、大模型备案与大模型登记的区别及适用场景,涵盖舆论属性、社会动员能力、生成式AI服务等核心概念,解析三类备案的流程、周期、材料要求及政策依据,助力企业合规开展AI服务。
# Qwen3-8B 的 TTFT 性能分析:16K 与 32K 输入 Prompt 的推算公式与底层原理详解
Qwen3-8B 是通义实验室推出的 80 亿参数大模型,支持最长 32,768 token 上下文,适用于长文本处理场景。通过 FP8 量化、CUDA Kernel 优化及 RoPE 位置编码技术,提升推理效率与稳定性。模型在 16K 输入下 TTFT 约 150-200ms,32K 输入下约 250-300ms,适用于文档摘要与长对话交互。
用Qwen3+MCPs实现AI自动发布小红书笔记!支持图文和视频
魔搭自动发布小红书MCP,是魔搭开发者小伙伴实现的小红书笔记自动发布器,可以通过这个MCP自动完成小红书标题、内容和图片的发布。
Qwen模型角色扮演最佳实践
角色扮演大模型通过模拟特定角色的行为、语言风格和情感表达,实现高度拟人化和定制化的互动体验。与传统通用模型相比,角色扮演模型在语言风格、性格特征和情绪反应上更加细腻,提供更真实的交互体验。本文介绍了如何通过system prompt、few-shot学习和微调等技术实现大模型的拟人化,包括使用阿里云百炼平台进行角色扮演测试,以及如何通过合成数据和Lora微调提高模型的表演效果。最终,展示了如何通过优化数据质量和训练策略,显著提升角色扮演模型的表现。
基于qwen2和qwenvl的自动批改作业应用!
针对作业批改中常见的问题,如低质量作业、大量简单作业耗时、需初筛异常作业等,开发了一款自动批改作业的应用。该应用通过备份作业文件、获取文档内容、利用AI生成评语,并保存关键信息与日志,简化了教师的工作流程,提高了效率。应用设计简洁,易于扩展,支持图片转文字处理,适合教育场景使用。
大模型 Agent 概述
大模型Agent是基于大型预训练模型构建的智能体,具有强大的语言理解和生成能力,能完成多任务处理。其记忆功能包括短期记忆和长期记忆,支持上下文保持、知识积累、计划决策及内容创作,广泛应用于自然语言处理、问答系统、信息检索、辅助决策、教育、创意应用和客服等领域。
通义万相开源14B数字人Wan2.2-S2V!影视级音频驱动视频生成,助力专业内容创作
今天,通义万相的视频生成模型又开源了!本次开源Wan2.2-S2V-14B,是一款音频驱动的视频生成模型,可生成影视级质感的高质量视频。
Qwen3开源发布:Think Deeper, Act Faster!社区推理、部署、微调、MCP调用实战教程来啦!
Qwen3开源发布:Think Deeper, Act Faster!社区推理、部署、微调、MCP调用实战教程来啦!
30分钟搞定媒体级新闻稿,这个AI提示词让技术人也能玩转公关写作
开发者常因新闻稿写作犯难,本文分享一套AI提示词工具,涵盖角色定义、结构化输入输出、多场景适配与合规检查,助力技术人快速生成符合媒体标准的专业稿件,提升传播效率。
深度解析大模型压缩技术:搞懂深度学习中的减枝、量化、知识蒸馏
本文系统解析深度学习模型压缩三大核心技术:剪枝、量化与知识蒸馏,详解如何实现模型缩小16倍、推理加速4倍。涵盖技术原理、工程实践与组合策略,助力AI模型高效部署至边缘设备。
通义千问API:让大模型写代码和跑代码
基于前面三章的铺垫,本章我们将展示大模型Agent的强大能力。我们不仅要实现让大模型同时使用多种查询工具,还要实现让大模型能查询天气情况,最后让大模型自己写代码来查询天气情况。
从技术到品牌:一个AI指令,让开发者也能写出动人的品牌故事
开发者常擅技术却困于品牌叙事。本文分享一套结构化AI指令,结合DeepSeek、通义千问等国产工具,将品牌故事拆解为可执行模块,助力技术人快速生成有温度、有逻辑的品牌故事框架,实现从代码到共鸣的跨越。
大模型备案攻略—2025全网最新最详细解读版
随着AI技术的发展,大模型备案成为行业热点。本文详解备案所需具体条件与注意事项,涵盖模型功能、适用场景、研制情况、安全评估及备案材料等核心内容,帮助企业全面了解备案流程,规避合规风险,顺利推进产品上线。
CosyVoice 与 SenseVoice:阿里FunAudioLLM两大语音生成项目的深度评测
近年来,基于大模型的语音人工智能技术发展迅猛,为自然语音人机交互带来新的可能。通义语音大模型无疑是这一领域的佼佼者。它涵盖了语音理解与语音生成两大核心能力,可支持多种语音任务,包括多语种语音识别、语种识别、情感识别、声音事件检测以及语音合成等
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
在云上搭建CosyVoice环境-保姆级教程
发现个好玩的模型,阿里最近开源的,可以便捷的复刻人声,本文提供全套安装过程。仓库地址:https://github.com/FunAudioLLM/CosyVoice。
使用TensorRT LLM构建和运行Qwen模型
本文档介绍如何在单GPU和单节点多GPU上使用TensorRT LLM构建和运行Qwen模型,涵盖模型转换、引擎构建、量化推理及LoRA微调等操作,并提供详细的代码示例与支持矩阵。
基于NVIDIA A30 加速卡推理部署通义千问-72B-Chat测试过程
本文介绍了基于阿里云通义千问72B大模型(Qwen-72B-Chat)的性能基准测试,包括测试环境准备、模型部署、API测试等内容。测试环境配置为32核128G内存的ECS云主机,配备8块NVIDIA A30 GPU加速卡。软件环境包括Ubuntu 22.04、CUDA 12.4.0、PyTorch 2.4.0等。详细介绍了模型下载、部署命令及常见问题解决方法,并展示了API测试结果和性能分析。
vLLM 架构学习指南
本指南深入解析vLLM高性能推理引擎架构,涵盖核心创新PagedAttention与连续批处理技术,结合代码结构、学习路径与实践建议,系统指导用户从入门到贡献源码的全过程。
大模型备案要点一次过【附材料清单详解】
广东省最新公布一批大模型备案名单,新增14款备案模型、6款登记模型,累计达80款备案、23款登记。文章详解大模型备案流程、周期(5-10个月)、要求(主体资质、数据合规、内容安全、模型完成度)、所需材料(备案表、安全评估报告、服务协议、语料标注规则等)及完整备案流程(初审、自测、提交、整改、终审、公示)。为大模型企业备案提供全面指导。
腾讯WeKnora 架构学习指南
《WeKnora架构学习指南》系统解析了这一腾讯开源的智能知识库项目,涵盖核心架构、技术栈、代码结构与学习路径。通过生活化类比和深度流程图解,帮助开发者从零掌握Go后端、Vue前端、RAG原理及微服务协同,提供四阶段进阶路线与实战建议,助力快速上手并参与贡献。
深度解析基于LangGraph的Agent系统架构设计与工程实践
LangGraph作为Agent 生态中非常热门的框架,今天我将借助 LangGraph,更高效、更优雅的方式构建复杂智能体系统。
大模型备案、登记全流程攻略
在AI浪潮下,大模型技术迅猛发展,为各行业带来变革。为确保算法安全有序发展,需进行相关备案登记。具体包括:大模型备案(面向公众提供生成式服务)、大模型登记(借助第三方大模型)、算法备案(5类算法)及双新评估(舆论属性服务)。未及时备案将面临法律处罚,备案流程涉及属地初审、中央终审等环节,周期约3-4个月。境外模型和特定行业有额外限制,备案后仍需常态化安全管理。
使用 Qwen 生成数据模型和进行结构化输出
本教程展示如何使用CAMEL框架和Qwen模型生成结构化数据。CAMEL是一个强大的多智能体框架,支持复杂的AI任务;Qwen由阿里云开发,具备自然语言处理等先进能力。教程涵盖安装、API密钥设置、定义Pydantic模型,并演示了通过Qwen生成JSON格式的学生信息。最后,介绍了如何利用Qwen生成多个随机学生信息的JSON格式数据。欢迎在[CAMEL GitHub](https://github.com/camel-ai/camel)上为项目点星支持。
百亿级知识库解决方案:从零带你构建高并发RAG架构(附实践代码)
本文详解构建高效RAG系统的关键技术,涵盖基础架构、高级查询转换、智能路由、索引优化、噪声控制与端到端评估,助你打造稳定、精准的检索增强生成系统。
大模型进阶微调篇(一):以定制化3B模型为例,各种微调方法对比-选LoRA还是PPO,所需显存内存资源为多少?
本文介绍了两种大模型微调方法——LoRA(低秩适应)和PPO(近端策略优化)。LoRA通过引入低秩矩阵微调部分权重,适合资源受限环境,具有资源节省和训练速度快的优势,适用于监督学习和简单交互场景。PPO基于策略优化,适合需要用户交互反馈的场景,能够适应复杂反馈并动态调整策略,适用于强化学习和复杂用户交互。文章还对比了两者的资源消耗和适用数据规模,帮助读者根据具体需求选择最合适的微调策略。
AI企业必看:最新结果标识合规要求及规范
随着《人工智能生成合成内容标识办法》及配套标准的发布,AI企业需快速掌握政策要求以确保合规运营。该办法明确指出,利用AI生成的内容(如文本、图片、音频、视频等)需通过显性标识(如“AI生成”字样)或隐性标识(如元数据、数字水印)进行标注。内容传播平台也需核验标识并提醒用户内容性质。此外,应用程序分发平台在审核时需确认是否提供AI生成服务及相关标识材料。对于AI企业而言,合规已成为必修课,需重点关注标识的规范性和溯源能力,以应对即将到来的监管要求。
本地部署的qwen3-8b模型和百炼上的qwen3-8b模型效果不一致
我在使用Function Call时发现,百炼平台上的Qwen3-8B模型与本地部署的Qwen3-8B模型效果存在差异,主要体现在函数参数生成上,本地模型常出现漏参或JSON格式错误,而百炼模型表现正常。想确认百炼平台的Qwen3-8B是否为更高版本?
通义灵码2.5来袭!MCP 功能直接让开发效率提升300%(附实战案例)
通义灵码2.5是阿里云推出的AI编码助手,以智能协作为核心,深度融合开发全流程。其三大升级点包括:编程智能体实现任务自主规划、MCP工具生态支持自然语言生成SQL、记忆进化系统个性化适配开发者习惯。通过自然语言即可完成数据库操作、代码生成与优化,大幅提升开发效率。此外,还具备工程级变更管理、多文件协同编辑及版本控制功能,适用于多种IDE环境,为企业提供安全高效的开发解决方案。
RAG分块技术全景图:5大策略解剖与千万级生产环境验证
本文深入解析RAG系统中的五大文本分块策略,包括固定尺寸、语义、递归、结构和LLM分块,探讨其工程实现与优化方案,帮助提升知识检索精度与LLM生成效果。
Qwen3 大模型在阿里云容器服务上的极简部署教程
通义千问 Qwen3 是 Qwen 系列最新推出的首个混合推理模型,其在代码、数学、通用能力等基准测试中,与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 等顶级模型相比,表现出极具竞争力的结果。
通义大模型使用指南之通义万相
该文介绍了如何在阿里云的通义大模型平台注册账号,并详细展示了通义万相功能的使用,包括文本生成图像、相似图像生成、图像风格迁移和应用广场(虚拟模特)四个部分。用户可以通过输入文字或选择图片,生成不同风格的创意作品,并能进行点赞、不满意、生成相似图、下载原图和收藏等操作。在应用广场中,用户可以上传图片并替换模特及背景,创建个性化商品展示图。
MoE模型加速秘籍:vLLM混合KV缓存管理解析
vLLM是高效分布式大模型推理引擎,采用分页注意力、连续批处理等技术实现高吞吐与低延迟。本文详解其架构设计与关键技术,包括KV缓存管理、调度机制、推测解码与分布式扩展等,助你深入理解性能优化原理。
优化通义大模型推理性能:企业级场景下的延迟与成本削减策略
本文基于金融、电商、医疗等领域的实战经验,深入探讨通义千问等大模型的推理优化技术栈。从计算图优化、批处理策略、量化压缩到系统架构四个维度展开,结合Python代码示例与压力测试数据,提供企业级解决方案。针对延迟敏感、高吞吐及成本敏感场景,分析性能瓶颈并提出算子融合、动态批处理、混合精度量化等方法,同时设计分布式推理架构与冷启动优化策略。通过案例展示,如电商大促场景优化,实现峰值QPS提升6.5倍、P99延迟降低53%、月度成本下降62%。文章还提供优化实施路线图,助力企业分阶段落地技术方案。