Qwen3:小而强,思深,行速
Qwen3(千问3)于北京时间4月29日凌晨发布,是Qwen系列大型语言模型的最新成员,具备全系列、开源最强、混合推理等特性。它包括两款MoE模型(Qwen3-235B-A22B和Qwen3-30B-A3B)及六个Dense模型,支持119种语言。Qwen3在代码、数学和通用能力测试中超越行业顶尖模型,如DeepSeek-R1和Grok-3。其旗舰版Qwen3-235B-A22B仅需4张H20即可本地部署,成本为DeepSeek-R1的35%。此外,Qwen3原生支持思考模式与非思考模式切换,降低复杂任务门槛,并支持MCP协议优化Agent架构。
全新开源通义千问Qwen3,它来了!
Qwen3是通义千问系列的最新模型,融合推理与非推理模式,兼具QwQ和Instruct模型能力。提供多种尺寸,包括235B-A22B、30B-A3B及六个Dense模型,大幅提升数学、代码、逻辑推理和对话能力,达到业界领先水平。旗舰模型Qwen3-235B-A22B在多场景测试中表现优异,小型模型如Qwen3-4B性能媲美大模型。用户可在阿里云百炼平台免费体验各100万Token。
【2026亲测】彻底禁止Windows 10/11自动更新,让电脑暂停更新10年!
厌倦Windows强制更新?本文教你3种有效方法暂停更新,最长可达10年!从系统设置到注册表修改,再到第三方工具,安全合法,操作简单,助你彻底告别蓝屏、重启困扰,还你清净流畅的使用体验。
【完全免费】VS Code 最好用的 12 款 AI 代码提示插件!!!
🎉 探索12款免费VSCode AI代码提示插件:Codeium、Codegeex、CodeFuse、TONGYI Lingma、Comate、iFlyCode、Fitten Code、Bito AI、Mintlify Doc Writer、Kodezi AI、aiXcoder、IntelliCode。这些插件提供智能补全、代码生成、注释、优化,支持多种语言,提升编程效率!🚀👩💻👨💻
MAI-UI 开源:通用 GUI 智能体基座登顶 SOTA!
MAI-UI是通义实验室推出的全尺寸GUI智能体基座模型,原生集成用户交互、MCP工具调用与端云协同能力。支持跨App操作、模糊语义理解与主动提问澄清,通过大规模在线强化学习实现复杂任务自动化,在出行、办公等高频场景中表现卓越,已登顶ScreenSpot-Pro、MobileWorld等多项SOTA评测。
Agent与大模型的区别
本文详细对比了人工智能领域的两个重要概念——Agent和大模型。大模型如GPT-3、BERT等,擅长自然语言处理任务,如文本生成、翻译等;Agent则是自主的软件实体,能够在特定环境中感知、决策并执行任务,如管理日程、控制智能家居等。文章介绍了它们的定义、功能、技术架构及应用场景,并总结了两者的核心差异和未来发展方向。
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
基于Spring AI Alibaba + Spring Boot + Ollama搭建本地AI对话机器人API
Spring AI Alibaba集成Ollama,基于Java构建本地大模型应用,支持流式对话、knife4j接口可视化,实现高隐私、免API密钥的离线AI服务。
深度解析智能体工作流(Agentic Workflows):核心概念、模式与应用
本文系统解析智能体工作流(Agentic Workflow),结合AI智能体的推理、工具与记忆能力,实现复杂任务的动态执行。内容涵盖核心概念、关键模式及实际应用,帮助读者全面理解其价值与挑战。
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸
一句话生成拓扑图!next-ai-draw-io 结合 AI 与 Draw.io,通过自然语言秒出架构图,支持私有部署、免费大模型接口,彻底解放生产力,绘图效率直接爆炸。
AI学习全景图:从大模型到RAG,从工具到变现,一条从0到1的路线
告别碎片化学习!本文系统梳理AI知识五层结构:从基础认知到商业变现,提供完整学习路径与优质资源链接。帮你构建AI知识网络,实现从工具使用到能力落地的跃迁。
三分钟让Dify接入Ollama部署的本地大模型!
本文详细介绍了如何在 Dify 中接入 Ollama 模型,包括模型添加、参数配置及常见问题解决。通过运行 Ollama 服务并与 qwen2:0.5b 模型交互,实现本地化大模型应用开发。同时提供了 Docker、Mac、Linux 和 Windows 平台上 Ollama 的部署与环境变量设置指南,帮助开发者快速上手。更多实战技巧可访问[编程严选网](http://www.javaedge.cn/)或关注作者的 Github 仓库。
大模型微调技术入门:从核心概念到实战落地全攻略
本课程系统讲解大模型微调核心技术,涵盖LoRA、QLoRA等高效方法,结合ComfyUI与主流工具实战,从数据准备到模型部署全流程落地,助力开发者低成本定制专属AI模型。
2025年前端框架是该选vue还是react?有了大模型-例如通义灵码辅助编码,就不用纠结了!vue用的多选react,react用的多选vue
本文比较了Vue和React两大前端框架,从状态管理、数据流、依赖注入、组件管理等方面进行了详细对比。当前版本和下载量数据显示React更为流行,但Vue在国内用户量增长迅速。Vue 3通过组合式API提供了更灵活的状态管理和组件逻辑复用,适合中小型项目;React则更适合大型项目和复杂交互逻辑。文章还给出了选型建议,强调了多框架学习的重要性,认为技术问题已不再是选型的关键,熟悉各框架的最佳实践更为重要。
基于 DIFY 的自动化数据分析实战
本文介绍如何使用DIFY搭建数据分析自动化流程,实现从输入需求到查询数据库、LLM分析再到可视化输出的全流程。基于经典的employees数据集和DIFY云端环境,通过LLM-SQL解析、SQL执行、LLM数据分析及ECharts可视化等模块,高效完成数据分析任务。此方案适用于人力资源分析、薪酬管理等数据密集型业务,显著提升效率并降低成本。
2026新规 | AI聊天机器人上线需要办理什么资质?
AIGC浪潮下,AI聊天机器人爆发式增长,2025年上半年中国相关企业注册超5万家。随着《人工智能拟人化互动服务管理暂行办法》发布,合规成关键。本文详解上线必备资质:ICP备案、算法与大模型双备案、特殊行业许可及拟人化服务新规,构建“四层合规体系”,助企业规避风险,实现可持续发展。
llama factory 从数据集起步 跑通 qwen系列开源生成式大模型 微调
`dataset_info.json` 文件用于管理 llama factory 中的所有数据集,支持 `alpaca` 和 `sharegpt` 格式。通过配置此文件,可以轻松添加自定义数据集。数据集的相关参数包括数据源地址、数据集格式、样本数量等,支持 Hugging Face 和 ModelScope 两个平台的数据集仓库。针对不同格式的数据集,提供了详细的配置示例,如 `alpaca` 格式的指令监督微调数据集、偏好数据集等,以及 `sharegpt` 格式的多模态数据集等。今天我们通过自定义数据集的方式来进行qwen2.5_14B_instruct模型进行微调
# Qwen3-8B 与 Qwen3-14B 的 TTFT 性能对比与底层原理详解
通义千问Qwen3系列是通义实验室2025年推出的最新大模型,包含多种参数版本,其中Qwen3-8B与Qwen3-14B均支持32K token上下文。Qwen3-8B参数量较小,响应更快,适合低延迟交互;Qwen3-14B参数更多,推理更强,适用于复杂任务。两者在TTFT、架构优化、量化技术及部署方案上各有侧重,满足多样应用场景需求。
Qwen3技术报告首次全公开!“混合推理模型”是这样炼成的
近日,通义千问Qwen3系列模型已开源,其技术报告也正式发布。Qwen3系列包含密集模型和混合专家(MoE)模型,参数规模从0.6B到235B不等。该模型引入了“思考模式”与“非思考模式”的动态切换机制,并采用思考预算机制优化推理性能。Qwen3支持119种语言及方言,较前代显著提升多语言能力,在多个基准测试中表现领先。此外,通过强到弱蒸馏技术,轻量级模型性能优异,且计算资源需求更低。所有Qwen3模型均采用Apache 2.0协议开源,便于社区开发与应用。
大模型微调技术入门:从核心概念到实战落地全攻略
本课程系统讲解大模型微调核心技术,涵盖全量微调与高效微调(LoRA/QLoRA)原理、优劣对比及适用场景,深入解析对话定制、领域知识注入、复杂推理等四大应用,并介绍Unsloth、LLaMA-Factory等主流工具与EvalScope评估框架,助力从入门到实战落地。
Cursor + qwen2.5-coder 32b 的配置方式
安装Cursor后,进入设置修改OpenAI基础URL为阿里云的DashScope接口,并添加Qwen2.5-Coder 32B模型。需先访问阿里云百灵控制台申请免费Key。配置完成后,即可使用该模型进行开发和测试。
解决 VSCode 安装通义灵码后左侧菜单栏不显示按钮的问题
在 VSCode 中安装通义灵码插件后,若左侧活动栏未显示图标,可通过右键选中代码触发插件面板,并将其图标拖至左侧栏固定,便于后续快速使用。
📢 我们发布了新一代端到端语音交互模型 Fun-Audio-Chat!
通义百聆开源Fun-Audio-Chat(8B),支持端到端语音交互,具备情感感知与任务执行能力。在多榜单同尺寸模型中排名第一,支持高精度语音理解、情感识别与Function Call,高效低延迟,已全面开放代码与权重,欢迎体验!
MNN × Qwen 实战:离线运行大模型的正确姿势
本期教程带你用MNN+Qwen在手机端部署大模型,从安装MNN Chat体验离线对话,到源码编译、模型转换与推理测试,再到Android/iOS移动端部署全流程实战,并提供精度与性能调优秘籍,助力端侧AI创新挑战赛。
AgentScope 1.0 全面进化,从原型走向产业落地!
AgentScope全新升级,打造生产级智能体生态:推出开箱即用的Alias、EvoTraders等应用,支持多场景落地;强化基建,实现动态技能扩展、白盒化运行与多语言支持;集成语音交互、数据工程等能力,提供从开发到部署的全链路解决方案。
一个提示词模板,搞定抖音短视频脚本创作
专为技术人打造的抖音脚本提示词模板,结构化拆解短视频创作套路,结合DeepSeek、通义千问等AI工具,快速生成可执行脚本框架,助力技术分享、产品演示高效落地,30秒讲清重点,开头抓人、节奏紧凑、完播率提升。
MCP详解:背景、架构与应用
模型上下文协议(MCP)是由Anthropic提出的开源标准,旨在解决大语言模型与外部数据源和工具集成的难题。作为AI领域的“USB-C接口”,MCP通过标准化、双向通信通道连接模型与外部服务,支持资源访问、工具调用及提示模板交互。其架构基于客户端-服务器模型,提供Python、TypeScript等多语言SDK,方便开发者快速构建服务。MCP已广泛应用于文件系统、数据库、网页浏览等领域,并被阿里云百炼平台引入,助力快速搭建智能助手。未来,MCP有望成为连接大模型与现实世界的通用标准,推动AI生态繁荣发展。
通义Qwen3-Max:大就是好
通义千问Qwen3-Max正式发布,参数超1T,训练稳定高效,在代码、推理、多语言等任务中表现卓越。预览版已登顶LMArena榜单前三,支持阿里云百炼API调用与Qwen Chat体验,敬请试用。
vLLM 架构学习指南
本指南深入解析vLLM高性能推理引擎架构,涵盖核心创新PagedAttention与连续批处理技术,结合代码结构、学习路径与实践建议,系统指导用户从入门到贡献源码的全过程。
大模型备案攻略—2025全网最新最详细解读版
随着AI技术的发展,大模型备案成为行业热点。本文详解备案所需具体条件与注意事项,涵盖模型功能、适用场景、研制情况、安全评估及备案材料等核心内容,帮助企业全面了解备案流程,规避合规风险,顺利推进产品上线。
Web渗透-文件上传漏洞-上篇
文件上传漏洞常见于Web应用,因类型限制不严可致恶意文件执行。本文介绍前端检测、MIME类型、黑名单、.htaccess、空格、双写等多种绕过方式,并结合upload-labs靶场演示利用方法,提升安全防护认知。
高效部署通义万相Wan2.1:ComfyUI文生/图生视频实战,工作流直取!
通义万相Wan2.1开源不到一周,已登顶HuggingFace Model 和 Space 榜双榜首,在HuggingFace和ModelScope平台的累计下载量突破100万次,社区热度持续攀升!为响应小伙伴们对ComfyUI工作流运行Wan2.1的强烈需求,社区开发者整理了实战教程👇
构建AI智能体:二十九、Text2SQL:告别繁琐SQL!用大模型自助生成数据报表
Text2SQL技术通过自然语言处理将用户查询转换为SQL语句,解决企业数据查询效率低下的痛点。该技术包含语义理解、模式对齐、SQL生成和优化等核心处理过程,核心组件包括自然语言理解模块、Schema管理模块和SQL生成模块。文章介绍了闭源和开源模型的选择策略,并提供了基于Function Calling的Text2SQL实现示例,展示如何安全高效地将自然语言转换为数据库查询。
SpringBoot整合MQTT实战:基于EMQX实现双向设备通信
本教程指导在Ubuntu上部署EMQX 5.9.0并集成Spring Boot实现MQTT双向通信,涵盖服务器搭建、客户端配置及生产实践,助您快速构建企业级物联网消息系统。
6步走I 大模型备案《通关手册》
本文依据《生成式人工智能服务管理暂行办法》,梳理企业上线大模型服务所需的备案流程、材料及注意事项,涵盖“是否需备案”“六步备案法”“安全评估重点”“特殊行业提示”等内容,助力企业合规落地。
别让你的大模型被忽悠了,聊聊prompt注入攻击
本文探讨了Prompt工程中的隐私与安全问题,重点分析了“奶奶漏洞”及更广泛的Prompt攻击现象,特别是Prompt注入的原理与防御手段。Prompt注入通过构造恶意输入突破模型限制,使LLM执行非预期操作。文章介绍了直接注入和间接注入类型,并提供了多种防御方案,如输入过滤、强化系统指令、接入第三方校验库及多模型协作防御。此外,还讨论了Prompt逆向工程及其正负影响,以及恶意MCP服务投毒的实际案例,如GitHub Copilot漏洞。最后提出了动态权限控制和持续安全监测等解决策略。
构建AI智能体:八十七、KM与Chinchilla法则:AI模型发展的两种训练法则完全解析
摘要: 大模型训练中,如何在有限计算预算(C≈6ND)下最优分配模型参数量(N)与训练数据量(D)是关键挑战。KM扩展法则主张“模型优先”,认为增大N的收益高于D(α=0.076<β=0.103),推荐N∝C^0.73、D∝C^0.27。Chinchilla法则则通过实验发现大模型普遍训练不足,提出平衡策略(α=β≈0.38),推荐N∝D∝C^0.5,即在相同预算下减小模型规模并大幅增加数据量,可提升性能。
手机也能跑通义Qwen3大模型,手把手教你部署!
全球开源模型冠军Qwen3与端到端全模态模型Qwen2.5-Omni现已成功在手机上跑通!借助MNN支持,适配Android、iOS及桌面端,实现低延迟、本地化、高安全的AI体验。用户可通过自定义Sampler设置、System Prompt和Max New Tokens调节模型输出风格与长度。
通义万相2.5-图生视频-Preview,模型使用指南
该表格展示了多个设计场景,包括模型选择、复制粘贴提示词与图片、一键生成视频等步骤。每个步骤配有详细描述及示意图,呈现了不同主题和风格的设计构思与实现方式。
5大实战技巧:优化RAG召回质量,避免“召回不足”灾难!
本文分享了团队在金融风控系统开发中优化RAG系统的实战经验,涵盖文档处理、召回策略与生成优化三大环节,解决召回不准、数据噪声等问题,助力构建高效精准的RAG系统。
向量数据库终极指南:AI开发者的进阶手册
本文深入解析向量数据库的原理与实战应用,涵盖其在AI系统中的核心作用、关键技术(如HNSW、PQ、LSH)、相似性搜索、元数据过滤及无服务器架构优势。适合开发者和AI从业者学习提升。
深度解析四大LLM微调工具:从单卡到千亿级训练的四大解决方案
本文详解大语言模型微调四大工具——Unsloth、Axolotl、LlamaFactory、DeepSpeed,覆盖从单卡实验到万亿参数分布式训练场景,助你掌握主流框架选型策略,提升微调效率。建议点赞收藏。