Qwen3:小而强,思深,行速
Qwen3(千问3)于北京时间4月29日凌晨发布,是Qwen系列大型语言模型的最新成员,具备全系列、开源最强、混合推理等特性。它包括两款MoE模型(Qwen3-235B-A22B和Qwen3-30B-A3B)及六个Dense模型,支持119种语言。Qwen3在代码、数学和通用能力测试中超越行业顶尖模型,如DeepSeek-R1和Grok-3。其旗舰版Qwen3-235B-A22B仅需4张H20即可本地部署,成本为DeepSeek-R1的35%。此外,Qwen3原生支持思考模式与非思考模式切换,降低复杂任务门槛,并支持MCP协议优化Agent架构。
全新开源通义千问Qwen3,它来了!
Qwen3是通义千问系列的最新模型,融合推理与非推理模式,兼具QwQ和Instruct模型能力。提供多种尺寸,包括235B-A22B、30B-A3B及六个Dense模型,大幅提升数学、代码、逻辑推理和对话能力,达到业界领先水平。旗舰模型Qwen3-235B-A22B在多场景测试中表现优异,小型模型如Qwen3-4B性能媲美大模型。用户可在阿里云百炼平台免费体验各100万Token。
Claude Code 国内保姆级使用指南:实测 GLM-4.7 与 Claude Opus 4.5 全方案解
Claude Code是Anthropic推出的编程AI代理工具。2026年国内开发者可通过配置`ANTHROPIC_BASE_URL`实现本地化接入:①极速平替——用Qwen Code v0.5.0或GLM-4.7,毫秒响应,适合日常编码;②满血原版——经灵芽API中转调用Claude Opus 4.5,胜任复杂架构与深度推理。
【Claude Code 全攻略】终端AI编程助手从入门到进阶(2026最新版)
Claude Code是Anthropic推出的终端原生AI编程助手,支持40+语言、200k超长上下文,无需切换IDE即可实现代码生成、调试、项目导航与自动化任务。本文详解其安装配置、四大核心功能及进阶技巧,助你全面提升开发效率,搭配GitHub Copilot使用更佳。
千问APP来咯!会聊天,能办事,还免费!!
千问APP公测上线!基于全新Qwen3模型,打造全能AI助手,覆盖办公、地图、健康、购物等多场景,免费畅享智能聊天与办事体验。即刻下载,让AI成为你的日常伙伴。
Agent与大模型的区别
本文详细对比了人工智能领域的两个重要概念——Agent和大模型。大模型如GPT-3、BERT等,擅长自然语言处理任务,如文本生成、翻译等;Agent则是自主的软件实体,能够在特定环境中感知、决策并执行任务,如管理日程、控制智能家居等。文章介绍了它们的定义、功能、技术架构及应用场景,并总结了两者的核心差异和未来发展方向。
三分钟让Dify接入Ollama部署的本地大模型!
本文详细介绍了如何在 Dify 中接入 Ollama 模型,包括模型添加、参数配置及常见问题解决。通过运行 Ollama 服务并与 qwen2:0.5b 模型交互,实现本地化大模型应用开发。同时提供了 Docker、Mac、Linux 和 Windows 平台上 Ollama 的部署与环境变量设置指南,帮助开发者快速上手。更多实战技巧可访问[编程严选网](http://www.javaedge.cn/)或关注作者的 Github 仓库。
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
阿里千问“驻桌”,阿里重构PC生产力
2025年11月26日,阿里巴巴宣布其AI大模型千问与夸克AI浏览器完成深度融合,做到了从手机端到PC端的无缝衔接,办公效率大大提升,同时夸克AI浏览器也释放了千问模型的能力。
DeepSeek——DeepSeek模型部署实战
本文介绍了DeepSeek大模型的本地部署方法、使用方式及API接入。首先,通过下载Ollama平台部署DeepSeek-R1模型,提供7种不同参数版本(1.5b至671b),用户可根据硬件选择合适的模型大小。接着,文章详细描述了如何在终端运行命令启动模型,并通过Chatbox官网下载并接入DeepSeek API,实现本地和云端模型的交互。最后,提及了DeepSeek官网和集成工具如POE的使用,帮助用户更好地利用DeepSeek进行开发和应用。
【完全免费】VS Code 最好用的 12 款 AI 代码提示插件!!!
🎉 探索12款免费VSCode AI代码提示插件:Codeium、Codegeex、CodeFuse、TONGYI Lingma、Comate、iFlyCode、Fitten Code、Bito AI、Mintlify Doc Writer、Kodezi AI、aiXcoder、IntelliCode。这些插件提供智能补全、代码生成、注释、优化,支持多种语言,提升编程效率!🚀👩💻👨💻
Cursor + qwen2.5-coder 32b 的配置方式
安装Cursor后,进入设置修改OpenAI基础URL为阿里云的DashScope接口,并添加Qwen2.5-Coder 32B模型。需先访问阿里云百灵控制台申请免费Key。配置完成后,即可使用该模型进行开发和测试。
深度解析智能体工作流(Agentic Workflows):核心概念、模式与应用
本文系统解析智能体工作流(Agentic Workflow),结合AI智能体的推理、工具与记忆能力,实现复杂任务的动态执行。内容涵盖核心概念、关键模式及实际应用,帮助读者全面理解其价值与挑战。
基于Spring AI Alibaba + Spring Boot + Ollama搭建本地AI对话机器人API
Spring AI Alibaba集成Ollama,基于Java构建本地大模型应用,支持流式对话、knife4j接口可视化,实现高隐私、免API密钥的离线AI服务。
2026年智能体(Agent)怎么学?从入门到实战的全景避坑指南
2026年,AI进入“智能体元年”。本文系统解析智能体四大核心架构与Agentic Workflow设计模式,涵盖开发者、产品经理到业务人员的实战路径,助力把握AI代理红利期,实现从工具应用到架构创新的跃迁。
从入门到精通:手把手教你用LLaMA Factory微调专属大模型
大家好,我是AI博主maoku老师。你是否觉得大模型“懂王”式回答不够专业?微调正是破局关键!本文带你深入浅出理解微调原理,掌握LoRA、量化、对话模板三大核心技术,并手把手教你用LLaMA Factory零代码实践,四步打造专属Web安全专家模型。从数据准备到部署应用,全程实战,助你将大模型从“通才”炼成“专才”,实现个性化、低成本、高效率的AI赋能。
AI学习全景图:从大模型到RAG,从工具到变现,一条从0到1的路线
告别碎片化学习!本文系统梳理AI知识五层结构:从基础认知到商业变现,提供完整学习路径与优质资源链接。帮你构建AI知识网络,实现从工具使用到能力落地的跃迁。
MAI-UI 开源:通用 GUI 智能体基座登顶 SOTA!
MAI-UI是通义实验室推出的全尺寸GUI智能体基座模型,原生集成用户交互、MCP工具调用与端云协同能力。支持跨App操作、模糊语义理解与主动提问澄清,通过大规模在线强化学习实现复杂任务自动化,在出行、办公等高频场景中表现卓越,已登顶ScreenSpot-Pro、MobileWorld等多项SOTA评测。
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸
一句话生成拓扑图!next-ai-draw-io 结合 AI 与 Draw.io,通过自然语言秒出架构图,支持私有部署、免费大模型接口,彻底解放生产力,绘图效率直接爆炸。
大模型应用:大模型性能评估指标:CLUE任务与数据集详解.10
CLUE(中文语言理解评估基准)是专为中文大模型设计的综合性评测体系,涵盖文本分类、自然语言推理、命名实体识别、阅读理解等任务,提供准确率、F1值、精确匹配等多维指标,并支持模块化评估与可视化分析,助力客观、全面衡量模型真实能力。(239字)
Docker+vLLM内网离线部署Qwen3 流程
本教程详解如何在A10四卡内网环境中,通过Docker+ vLLM离线部署Qwen3-32B/Qwen3-VL-30B-Instruct大模型。涵盖环境准备、镜像离线导入、模型下载、容器启动及参数调优,支持FP8/KV缓存/张量并行等高性能配置,助力安全高效私有化推理
MNN × Qwen 实战:离线运行大模型的正确姿势
本期教程带你用MNN+Qwen在手机端部署大模型,从安装MNN Chat体验离线对话,到源码编译、模型转换与推理测试,再到Android/iOS移动端部署全流程实战,并提供精度与性能调优秘籍,助力端侧AI创新挑战赛。
vLLM 架构学习指南
本指南深入解析vLLM高性能推理引擎架构,涵盖核心创新PagedAttention与连续批处理技术,结合代码结构、学习路径与实践建议,系统指导用户从入门到贡献源码的全过程。
让 AI 为你打工:只需半小时,用轻量应用服务器部署 24 小时在线的 Moltbot(Clawdbot
阿里云Moltbot(Clawdbot)是一款7×24小时在线AI员工,支持邮件处理、资料整理、文件监控、口语陪练等功能。搭配轻量应用服务器,30分钟即可快速部署,现支持钉钉、QQ、飞书三端接入。
📢 我们发布了新一代端到端语音交互模型 Fun-Audio-Chat!
通义百聆开源Fun-Audio-Chat(8B),支持端到端语音交互,具备情感感知与任务执行能力。在多榜单同尺寸模型中排名第一,支持高精度语音理解、情感识别与Function Call,高效低延迟,已全面开放代码与权重,欢迎体验!
AgentScope 1.0 全面进化,从原型走向产业落地!
AgentScope全新升级,打造生产级智能体生态:推出开箱即用的Alias、EvoTraders等应用,支持多场景落地;强化基建,实现动态技能扩展、白盒化运行与多语言支持;集成语音交互、数据工程等能力,提供从开发到部署的全链路解决方案。
哪里不对改哪里!全能图像编辑模型Qwen-Image-Edit来啦
Qwen-Image-Edit基于20B Qwen-Image模型,融合视觉语义与外观控制,支持中英文文字精准编辑、风格迁移、IP创作等多重功能,具备SOTA性能,助力低门槛、高精度图像编辑。
构建AI智能体:九十八、实践出真知:本地AI大模型部署的核心要点与经验总结
本文介绍了如何在个人电脑上加载和运行轻量级AI大语言模型。首先解析了大语言模型的基本概念和工作原理,包括Tokenizer、Prompt等关键术语。然后详细演示了三种模型加载方式:通过ModelSpace下载Qwen模型、使用HuggingFace加载BERT模型、利用SentenceTransformer获取句子嵌入。特别强调了在CPU环境下的配置技巧,如设置torch.float32数据类型和优化内存使用。文章还提供了完整的中文对话生成示例代码,展示了Qwen1.5-1.8B-Chat模型的实际应用效果
通义万相2.5-图生视频-Preview,模型使用指南
该表格展示了多个设计场景,包括模型选择、复制粘贴提示词与图片、一键生成视频等步骤。每个步骤配有详细描述及示意图,呈现了不同主题和风格的设计构思与实现方式。
别让你的大模型被忽悠了,聊聊prompt注入攻击
本文探讨了Prompt工程中的隐私与安全问题,重点分析了“奶奶漏洞”及更广泛的Prompt攻击现象,特别是Prompt注入的原理与防御手段。Prompt注入通过构造恶意输入突破模型限制,使LLM执行非预期操作。文章介绍了直接注入和间接注入类型,并提供了多种防御方案,如输入过滤、强化系统指令、接入第三方校验库及多模型协作防御。此外,还讨论了Prompt逆向工程及其正负影响,以及恶意MCP服务投毒的实际案例,如GitHub Copilot漏洞。最后提出了动态权限控制和持续安全监测等解决策略。
使用 yt-dlp 二次开发, 快速下载 YouTube等平台高清视频工具开发
想从多个平台下载高清无水印视频?本文教你使用 `yt-dlp` 工具轻松实现!支持 YouTube、B站、抖音等主流平台,提供代码示例与解析,涵盖批量下载、字幕提取、音频分离等高级功能。无论你是开发者还是普通用户,都能快速上手,高效获取所需视频资源。
高效部署通义万相Wan2.1:ComfyUI文生/图生视频实战,工作流直取!
通义万相Wan2.1开源不到一周,已登顶HuggingFace Model 和 Space 榜双榜首,在HuggingFace和ModelScope平台的累计下载量突破100万次,社区热度持续攀升!为响应小伙伴们对ComfyUI工作流运行Wan2.1的强烈需求,社区开发者整理了实战教程👇
2025年前端框架是该选vue还是react?有了大模型-例如通义灵码辅助编码,就不用纠结了!vue用的多选react,react用的多选vue
本文比较了Vue和React两大前端框架,从状态管理、数据流、依赖注入、组件管理等方面进行了详细对比。当前版本和下载量数据显示React更为流行,但Vue在国内用户量增长迅速。Vue 3通过组合式API提供了更灵活的状态管理和组件逻辑复用,适合中小型项目;React则更适合大型项目和复杂交互逻辑。文章还给出了选型建议,强调了多框架学习的重要性,认为技术问题已不再是选型的关键,熟悉各框架的最佳实践更为重要。
解决 VSCode 安装通义灵码后左侧菜单栏不显示按钮的问题
在 VSCode 中安装通义灵码插件后,若左侧活动栏未显示图标,可通过右键选中代码触发插件面板,并将其图标拖至左侧栏固定,便于后续快速使用。
多智能体如何高效协作?AI Agent指挥官与AI调度官的实践方法
本文提出AI Agent“指挥官+调度官”协同治理机制,通过角色分离、统一调度与规则约束,解决多智能体系统中的任务冲突、资源争抢与决策分散问题,提升复杂场景下的可扩展性、稳定性与可解释性。
llama factory 从数据集起步 跑通 qwen系列开源生成式大模型 微调
`dataset_info.json` 文件用于管理 llama factory 中的所有数据集,支持 `alpaca` 和 `sharegpt` 格式。通过配置此文件,可以轻松添加自定义数据集。数据集的相关参数包括数据源地址、数据集格式、样本数量等,支持 Hugging Face 和 ModelScope 两个平台的数据集仓库。针对不同格式的数据集,提供了详细的配置示例,如 `alpaca` 格式的指令监督微调数据集、偏好数据集等,以及 `sharegpt` 格式的多模态数据集等。今天我们通过自定义数据集的方式来进行qwen2.5_14B_instruct模型进行微调
大模型备案攻略—2025全网最新最详细解读版
随着AI技术的发展,大模型备案成为行业热点。本文详解备案所需具体条件与注意事项,涵盖模型功能、适用场景、研制情况、安全评估及备案材料等核心内容,帮助企业全面了解备案流程,规避合规风险,顺利推进产品上线。
MCP详解:背景、架构与应用
模型上下文协议(MCP)是由Anthropic提出的开源标准,旨在解决大语言模型与外部数据源和工具集成的难题。作为AI领域的“USB-C接口”,MCP通过标准化、双向通信通道连接模型与外部服务,支持资源访问、工具调用及提示模板交互。其架构基于客户端-服务器模型,提供Python、TypeScript等多语言SDK,方便开发者快速构建服务。MCP已广泛应用于文件系统、数据库、网页浏览等领域,并被阿里云百炼平台引入,助力快速搭建智能助手。未来,MCP有望成为连接大模型与现实世界的通用标准,推动AI生态繁荣发展。
# Qwen3-8B 与 Qwen3-14B 的 TTFT 性能对比与底层原理详解
通义千问Qwen3系列是通义实验室2025年推出的最新大模型,包含多种参数版本,其中Qwen3-8B与Qwen3-14B均支持32K token上下文。Qwen3-8B参数量较小,响应更快,适合低延迟交互;Qwen3-14B参数更多,推理更强,适用于复杂任务。两者在TTFT、架构优化、量化技术及部署方案上各有侧重,满足多样应用场景需求。
大模型应用:大模型的词元化处理详解:BPE、WordPiece、Unigram.11
本文详解大模型中文词元化三大核心算法:BPE(基于频率合并)、WordPiece(基于似然增益合并)和Unigram(自顶向下概率筛选)。通过原理、流程、代码与示例对比,揭示其在中文分词中的适用性与优化要点,强调语料质量、参数配置及中文特性适配的关键作用。(239字)
大模型部署算力账本:手把手教你算清GPU显存这笔账
本文详解大模型部署中GPU显存计算的关键:以Llama 70B为例,拆解模型权重、KV Cache、其他开销三大部分,揭示高并发下显存需求超1TB的真相,并提供量化、并行优化等降本策略,助你精准规划硬件投入,避免资源浪费或服务崩溃。
构建AI智能体:二十九、Text2SQL:告别繁琐SQL!用大模型自助生成数据报表
Text2SQL技术通过自然语言处理将用户查询转换为SQL语句,解决企业数据查询效率低下的痛点。该技术包含语义理解、模式对齐、SQL生成和优化等核心处理过程,核心组件包括自然语言理解模块、Schema管理模块和SQL生成模块。文章介绍了闭源和开源模型的选择策略,并提供了基于Function Calling的Text2SQL实现示例,展示如何安全高效地将自然语言转换为数据库查询。
基于 DIFY 的自动化数据分析实战
本文介绍如何使用DIFY搭建数据分析自动化流程,实现从输入需求到查询数据库、LLM分析再到可视化输出的全流程。基于经典的employees数据集和DIFY云端环境,通过LLM-SQL解析、SQL执行、LLM数据分析及ECharts可视化等模块,高效完成数据分析任务。此方案适用于人力资源分析、薪酬管理等数据密集型业务,显著提升效率并降低成本。