前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
视觉智能开放平台,视频资源包5000点
简介: 本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。

利用大模型开发应用时,我们有时候要第一时间给出用户相应,也就是使用流式调用的方式。这时候前端处理响应,就需要特殊的处理:利用处理可读流的方式从响应中读取数据。

随着大语言模型(LLM)在各种应用中的广泛使用,如何高效地从服务器获取模型生成的长文本响应成为一个重要问题。传统的HTTP请求模式通常等待服务器生成完整的响应内容再返回给客户端。然而,流式调用(streaming)通过分段传输部分响应,能提高实时性和用户体验。在此场景中,HTTP流式调用被广泛应用,尤其是在与LLM(如通义千文等)进行交互时。

本文将介绍LLM的HTTP API流式调用的机制,并深入探讨前端如何处理流式响应,以实现实时的、渐进式的结果呈现。

一、什么是HTTP API流式调用?

HTTP API流式调用(HTTP Streaming)是一种传输方式,服务器不会等待所有的数据生成完毕再返回给客户端,而是将响应数据逐步分段发送。当大语言模型生成内容时,服务器可以通过流式传输,将文本按块传递给前端,前端可以立即呈现这些部分内容,无需等待完整响应。

流式响应的基本流程:

  1. 客户端请求:前端通过HTTP请求向服务器发出调用,通常是POST请求,附带需要生成内容的提示(prompt),以及相关的参数。
  2. 服务器处理并分段响应:服务器开始处理请求,但不等待处理结束,先将部分生成的文本作为响应的一个数据块(chunk)发送给客户端。
  3. 客户端逐步接收并处理数据块:客户端持续监听流式响应,接收每个数据块并实时处理或呈现。
  4. 连接关闭:服务器在生成完毕后关闭连接,客户端停止接收数据。

这种方式特别适合用于大语言模型的文本生成任务,因为大规模模型生成的内容可能会很长,逐步输出可以改善用户的等待体验。

二、如何实现LLM的HTTP API流式调用?

以一个调用LLM的流式HTTP API为例,下面是一个使用fetch来发起流式调用的典型前端实现流程。国内的各个大模型,调用方式差不多,参数也类似,甚至还会有openai兼容的openapi接口

const fetchStreamData = async (prompt) => {
   
  const response = await fetch('https://api.openai.com/v1/completions', {
   
    method: 'POST',
    headers: {
   
      'Content-Type': 'application/json',
      'Authorization': `Bearer YOUR_API_KEY`
    },
    body: JSON.stringify({
   
      model: 'gpt-4',
      prompt: prompt,
      stream: true // 启用流式响应
    })
  });

  // 检查响应状态
  if (!response.ok) {
   
    throw new Error('Network response was not ok');
  }

  // 获取响应的可读流并处理流数据
  const reader = response.body.getReader();
  const decoder = new TextDecoder('utf-8');
  let done = false;

  while (!done) {
   
    // 读取流中的下一个数据块
    const {
    value, done: readerDone } = await reader.read();
    done = readerDone;

    // 将数据块解码为字符串
    const chunk = decoder.decode(value, {
    stream: true });
    console.log(chunk);  // 处理或显示每一块数据
    // ***** 这需要注意,各个大模型的分块数据结构可能不一样,甚至会有可能出现部分数据的情况,要单独兼容和处理哦
    // 以及有些模型内容的路径不一样,一次性响应在content,但是流式在delta字段下
  }
};

1. 请求设置

  • fetch函数用于发起POST请求,stream: true选项通知服务器启用流式传输。
  • 请求体中包含模型ID和提示词prompt,以及其他必要参数(如API密钥)。

2. 读取流数据

  • 使用response.body.getReader()获取一个流的阅读器(Reader),该阅读器允许我们按数据块逐步读取响应。
  • TextDecoder将字节数据解码为文本格式,确保能够正确处理流传输中的文本数据。

3. 逐块处理数据

  • 通过reader.read()逐步读取每个数据块,value包含读取到的字节数据,done表示流是否已结束。
  • chunk是解码后的文本数据,每次接收到新的数据块时可以实时处理或显示。

三、前端如何处理流式响应?

当后端返回流式响应时,前端可以逐步接收并更新UI,提供更好的用户交互体验。以下是前端处理流式响应的关键步骤。

1. 逐步更新界面

每当接收到一个新的数据块,前端可以立即将其更新到UI上,而不必等待完整的响应。这种实时更新的机制对于聊天机器人、搜索建议等场景尤为重要。例如:

const chatBox = document.getElementById('chat-box');

const updateChat = (text) => {
   
  // 将新数据块追加到界面上
  chatBox.innerHTML += `<p>${
     text}</p>`;
};

// 在逐块接收时更新
while (!done) {
   
  const {
    value, done: readerDone } = await reader.read();
  const chunk = decoder.decode(value, {
    stream: true });
  updateChat(chunk);  // 实时更新聊天框
}

通过这种方式,用户能够看到模型生成内容的部分结果,即使整个请求尚未完成,提升了用户体验。

2. 处理中断或错误

在流式调用中,网络连接可能会中断,或者服务器可能会返回错误。前端应该做好错误处理,例如:

if (!response.ok) {
   
  console.error('Error with the request');
  return;
}

reader.read().then(processStream).catch(error => {
   
  console.error('Error while reading stream:', error);
});

在中断时,前端可以选择显示错误消息,或尝试重新发起请求以重新建立连接。

3. 流数据的拼接与处理

由于流传输的数据是分块发送的,前端可能需要将这些分段数据拼接起来,形成完整的响应。例如:

let fullResponse = '';

while (!done) {
   
  const {
    value, done: readerDone } = await reader.read();
  const chunk = decoder.decode(value, {
    stream: true });
  fullResponse += chunk;  // 拼接完整响应
}

4. 自动滚动和用户交互优化

对于聊天机器人或类似应用,前端可以设置自动滚动,使得用户在流式数据逐步加载时能够始终看到最新的内容。

const scrollToBottom = () => {
   
  chatBox.scrollTop = chatBox.scrollHeight;
};

updateChat(chunk);
scrollToBottom();  // 更新后自动滚动

四、流式调用的优势

  1. 提升用户体验:通过流式传输,用户能够实时看到部分生成的内容,而不需要等待整个模型生成完毕,从而减少了感知延迟。
  2. 减少服务器压力:在某些场景下,流式调用可以减少服务器压力,因为服务器可以按需逐步处理和发送数据,而不需要一次性生成和发送大量数据。
  3. 增强交互性:用户能够根据逐步收到的内容进行进一步操作,如在对话中实时反馈等。

五、总结

HTTP API流式调用为大语言模型的响应提供了更高效和实时的交互方式。通过流式调用,前端可以逐步接收模型生成的部分数据,并即时呈现,从而提升用户体验。前端在实现流式调用时,需要处理数据分块的拼接、实时更新界面和处理可能的中断错误。通过这种方式,可以在交互密集的应用场景(如聊天机器人、自动化助手等)中大幅改善用户的使用体验。

处理流式调用,尤其是国产大模型的兼容是一个重复的工作,后面的章节如果有空,我会讲讲如何基于rxjs或者langchain.js简化这个工作

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
6天前
|
JSON 自然语言处理 前端开发
【01】对APP进行语言包功能开发-APP自动识别地区ip后分配对应的语言功能复杂吗?-成熟app项目语言包功能定制开发-前端以uniapp-基于vue.js后端以laravel基于php为例项目实战-优雅草卓伊凡
【01】对APP进行语言包功能开发-APP自动识别地区ip后分配对应的语言功能复杂吗?-成熟app项目语言包功能定制开发-前端以uniapp-基于vue.js后端以laravel基于php为例项目实战-优雅草卓伊凡
102 72
【01】对APP进行语言包功能开发-APP自动识别地区ip后分配对应的语言功能复杂吗?-成熟app项目语言包功能定制开发-前端以uniapp-基于vue.js后端以laravel基于php为例项目实战-优雅草卓伊凡
|
1月前
|
前端开发 安全 开发工具
【11】flutter进行了聊天页面的开发-增加了即时通讯聊天的整体页面和组件-切换-朋友-陌生人-vip开通详细页面-即时通讯sdk准备-直播sdk准备-即时通讯有无UI集成的区别介绍-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草Alex
【11】flutter进行了聊天页面的开发-增加了即时通讯聊天的整体页面和组件-切换-朋友-陌生人-vip开通详细页面-即时通讯sdk准备-直播sdk准备-即时通讯有无UI集成的区别介绍-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草Alex
174 90
【11】flutter进行了聊天页面的开发-增加了即时通讯聊天的整体页面和组件-切换-朋友-陌生人-vip开通详细页面-即时通讯sdk准备-直播sdk准备-即时通讯有无UI集成的区别介绍-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草Alex
|
1月前
|
前端开发 Java Shell
【08】flutter完成屏幕适配-重建Android,增加GetX路由,屏幕适配,基础导航栏-多版本SDK以及gradle造成的关于fvm的使用(flutter version manage)-卓伊凡换人优雅草Alex-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草Alex
【08】flutter完成屏幕适配-重建Android,增加GetX路由,屏幕适配,基础导航栏-多版本SDK以及gradle造成的关于fvm的使用(flutter version manage)-卓伊凡换人优雅草Alex-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草Alex
176 20
【08】flutter完成屏幕适配-重建Android,增加GetX路由,屏幕适配,基础导航栏-多版本SDK以及gradle造成的关于fvm的使用(flutter version manage)-卓伊凡换人优雅草Alex-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草Alex
|
12天前
|
监控 前端开发 Java
构建高效Java后端与前端交互的定时任务调度系统
通过以上步骤,我们构建了一个高效的Java后端与前端交互的定时任务调度系统。该系统使用Spring Boot作为后端框架,Quartz作为任务调度器,并通过前端界面实现用户交互。此系统可以应用于各种需要定时任务调度的业务场景,如数据同步、报告生成和系统监控等。
35 9
|
1月前
|
前端开发
【2025优雅草开源计划进行中01】-针对web前端开发初学者使用-优雅草科技官网-纯静态页面html+css+JavaScript可直接下载使用-开源-首页为优雅草吴银满工程师原创-优雅草卓伊凡发布
【2025优雅草开源计划进行中01】-针对web前端开发初学者使用-优雅草科技官网-纯静态页面html+css+JavaScript可直接下载使用-开源-首页为优雅草吴银满工程师原创-优雅草卓伊凡发布
40 1
【2025优雅草开源计划进行中01】-针对web前端开发初学者使用-优雅草科技官网-纯静态页面html+css+JavaScript可直接下载使用-开源-首页为优雅草吴银满工程师原创-优雅草卓伊凡发布
|
1月前
|
人工智能 前端开发 JavaScript
详解智能编码在前端研发的创新应用
接下来,人与智能体的交互将变得更为紧密,比如 N 年以后是否可以逐渐过渡。这个逐渐过渡的过程实际上是温和的,从依赖人类到依赖超大规模算力的转变,可能会取代我们的一些职责。这不仅仅是简单的叠加关系。对于AI和超大规模算力,这是否意味着我们可以大幅度提升软件质量,是否可以缩短研发周期并提高效率,还有创造出更优质的软件并持续发展,这无疑是肯定的。
132 25
|
1月前
|
Dart 前端开发 Android开发
【09】flutter首页进行了完善-采用android studio 进行真机调试开发-增加了直播间列表和短视频人物列表-增加了用户中心-卓伊凡换人优雅草Alex-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草Alex
【09】flutter首页进行了完善-采用android studio 进行真机调试开发-增加了直播间列表和短视频人物列表-增加了用户中心-卓伊凡换人优雅草Alex-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草Alex
54 4
【09】flutter首页进行了完善-采用android studio 进行真机调试开发-增加了直播间列表和短视频人物列表-增加了用户中心-卓伊凡换人优雅草Alex-开发完整的社交APP-前端客户端开发+数据联调|以优雅草商业项目为例做开发-flutter开发-全流程-商业应用级实战开发-优雅草Alex
|
1月前
|
人工智能 前端开发 JavaScript
智能编码在前端研发的创新应用
在前端开发领域,智能编码技术正引领一场变革,通过大模型的强大能力将自然语言需求直接转化为高效、可靠的代码实现。
109 10
|
10天前
|
人工智能 前端开发 JavaScript
详解智能编码在前端研发的创新应用 | 领通义灵码蛇年红包封面
详解智能编码在前端研发的创新应用 | 领通义灵码蛇年红包封面
|
1月前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
1541 14
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用