手机也能跑通义Qwen3大模型,手把手教你部署!

简介: 全球开源模型冠军Qwen3与端到端全模态模型Qwen2.5-Omni现已成功在手机上跑通!借助MNN支持,适配Android、iOS及桌面端,实现低延迟、本地化、高安全的AI体验。用户可通过自定义Sampler设置、System Prompt和Max New Tokens调节模型输出风格与长度。

全球开源模型冠军 Qwen3、端到端全模态模型 Qwen2.5-Omni现已成功在手机上跑通!

在 MNN 的支持下,Qwen3 系列模型已适配 AndroidiOS 桌面端,实现低延迟、本地化、高安全的 AI 体验。同时,Qwen2.5-Omni 的语音理解、图像分析等多模态能力也在移动端得到完整释放。

image.png

MNN Chat APP 支持自定义 Sampler 设置System Prompt Max New Tokens,你可以根据需要调节模型输出的风格、长度和人设,让 Qwen3 的回答更贴合你的使用场景。

image.png

⬆️ 官方推荐 Sample 参数

image.png


是不是已经迫不及待想要动手尝试了?小编为你整理了一份适用于 Android、iOS 和桌面端的完整部署流程,跟着做就能轻松上手。

Android 平台部署

Android 用户可以直接从 GitHub 上下载,也可自行编译定制功能。

git clone https://github.com/alibaba/MNN.gitcd project/androidmkdir build_64../build_64.sh "-DMNN_LOW_MEMORY=true  -DMNN_BUILD_LLM=true -DMNN_SUPPORT_TRANSFORMER_FUSE=true -DMNN_ARM82=true -DMNN_USE_LOGCAT=true -DMNN_OPENCL=true -DLLM_SUPPORT_VISION=true -DMNN_BUILD_OPENCV=true -DMNN_IMGCODECS=true -DLLM_SUPPORT_AUDIO=true -DMNN_BUILD_AUDIO=true -DMNN_BUILD_DIFFUSION=ON -DMNN_SEP_BUILD=ON"find . -name "*.so" -exec cp {} ../apps/MnnLlmApp/app/src/main/jniLibs/arm64-v8a/  cd ../apps/MnnLlmApp/./gradlew installDebug

1:05

iOS 平台部署

现阶段 iOS 用户需要手动编译,部署过程分为 5 步

1、下载仓库代码

git clone https://github.com/alibaba/MNN.git

2、编译 MNN.framework


cd MNN/
sh package_scripts/ios/buildiOS.sh "-DMNN_ARM82=true -DMNN_LOW_MEMORY=true -DMNN_SUPPORT_TRANSFORMER_FUSE=true -DMNN_BUILD_LLM=true 
-DMNN_METAL=ON
-DMNN_BUILD_DIFFUSION=ON
-DMNN_BUILD_OPENCV=ON
-DMNN_IMGCODECS=ON
-DMNN_OPENCL=OFF
-DMNN_SEP_BUILD=OFF

3、拷贝 framework 到 iOS 项目中


mv MNN-iOS-CPU-GPU/Static/MNN.framework 
/apps/iOS/MNNLLMChat/MNN.framework

4、配置依赖库

这里需要确保 Link Binary With Libraried 中包含 MNN.framework 和其他三个 Framework。

image.png

如果没有包含,可以手动添加:

image.png

image.png

5、修改 iOS 签名并编译项目

cd /apps/iOS/MNNLLMChat
open MNNLLMiOS.xcodeproj

在 Xcode 的 Signing & Capabilities 页面中设置 Team 和 Bundle Identifier 后,点击运行按钮即可启动应用,加载并运行 Qwen3 或 Qwen2.5-Omni 模型。

image.png

后续我们也会上线 TestFlight 安装包,让你一键安装、轻松使用!

桌面端部署(Windows、Mac、Linux)

如果你想在电脑上尝试这些模型,也非常简单,只需要从魔搭平台下载模型,再配合 MNN 源码编译即可。

1、模型下载

#命令行工具下载
odelscope download --model 'MNN/Qwen2.5-Omni-3B-MNN' --local_dir 'path/to/dir'

2、环境安装

  • x86架构额外加 MNN_AVX512 的宏:
  • Mac 推荐增加 MNN_METAL的宏
git clone https://github.com/alibaba/MNN.git
# 编译
cd MNNmkdir build && cd buildcmake .. -DLLM_SUPPORT_VISION=ON -DMNN_BUILD_OPENCV=ON -DMNN_IMGCODECS=ON -DLLM_SUPPORT_AUDIO=ON -DMNN_BUILD_AUDIO=ON -DMNN_LOW_MEMORY=true -DMNN_CPU_WEIGHT_DEQUANT_GEMM=true -DMNN_BUILD_LLM=true -DMNN_SUPPORT_TRANSFORMER_FUSE=truemake -j

编译完成后,可以看到 mnncli 产物,通过 mnncli 命令可以执行下载、benchmark 测试、启动 rest 服务等功能。

:

➡️ Qwen3模型推理

# 运行
./mnncli serve Qwen3-4B-MNN

完成上述命令执行后,系统将在本地启动一个 REST 服务端,接下来你就可以在 Chatbox 等客户端配置使用 MNN 服务啦~

image.png

➡️ Qwen2.5-Omni 模型推理

./llm_demo /path/to/Qwen2.5-Omni-3B-MNN/config.json

你可以通过上述命令启动推理流程,Qwen2.5-Omni 支持在提示词中嵌入图像和音频资源,实现图文+语音的联合理解。例如:

<img>https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg</img>介绍一下这张图片
<audio>https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/translate_to_chinese.wav</audio>

image.png


📢注意注意:由于本篇文章内视频链接不可下载,详细视频信息可点击此链接查看:https://mp.weixin.qq.com/s/VSC7Bkcq-w991CodHFIfyw

⛳如果想要了解更多通义大模型的模型详细信息以及直接进入体验,可以点击🔗https://www.aliyun.com/product/tongyi直接进入查看和体验哦~~

也可以关注一下通义大模型的公众号,后续有新的产品动态都会在内发布。

通义大模型公众号二维码.png

相关文章
|
1月前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
2月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1304 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
1月前
|
机器学习/深度学习 人工智能 人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
342 121
|
1月前
|
数据采集 人工智能 搜索推荐
智能新纪元:多模态大模型如何重塑人机交互
智能新纪元:多模态大模型如何重塑人机交互
203 113
|
1月前
|
人工智能 人机交互 知识图谱
当AI学会“融会贯通”:多模态大模型如何重塑未来
当AI学会“融会贯通”:多模态大模型如何重塑未来
265 114
|
1月前
|
人工智能 安全 搜索推荐
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
236 117
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
518 13
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
2月前
|
人工智能 云栖大会
2025云栖大会大模型应用开发与部署|门票申领
2025云栖大会大模型应用开发与部署门票申领
173 1
|
1月前
|
缓存 API 调度
70_大模型服务部署技术对比:从框架到推理引擎
在2025年的大模型生态中,高效的服务部署技术已成为连接模型能力与实际应用的关键桥梁。随着大模型参数规模的不断扩大和应用场景的日益复杂,如何在有限的硬件资源下实现高性能、低延迟的推理服务,成为了所有大模型应用开发者面临的核心挑战。
|
1月前
|
监控 安全 数据安全/隐私保护
55_大模型部署:从云端到边缘的全场景实践
随着大型语言模型(LLM)技术的飞速发展,从实验室走向产业化应用已成为必然趋势。2025年,大模型部署不再局限于传统的云端集中式架构,而是向云端-边缘协同的分布式部署模式演进。这种转变不仅解决了纯云端部署在延迟、隐私和成本方面的痛点,还为大模型在各行业的广泛应用开辟了新的可能性。本文将深入剖析大模型部署的核心技术、架构设计、工程实践及最新进展,为企业和开发者提供从云端到边缘的全场景部署指南。