手机也能跑通义Qwen3大模型,手把手教你部署!
全球开源模型冠军Qwen3与端到端全模态模型Qwen2.5-Omni现已成功在手机上跑通!借助MNN支持,适配Android、iOS及桌面端,实现低延迟、本地化、高安全的AI体验。用户可通过自定义Sampler设置、System Prompt和Max New Tokens调节模型输出风格与长度。
NVIDIA 实现通义千问 Qwen3 的生产级应用集成和部署
阿里巴巴近期开源了通义千问Qwen3大语言模型(LLM),包含两款混合专家模型(MoE)235B-A22B与30B-A3B,以及六款稠密模型(Dense)从0.6B到32B不等。开发者可基于NVIDIA GPU使用TensorRT-LLM、Ollama、SGLang、vLLM等框架高效部署Qwen3系列模型,实现快速词元生成和生产级应用开发。
大模型对齐实战:PPO算法的原理与应用实践
本文深入浅出讲解PPO算法在大模型偏好对齐中的应用,涵盖核心原理、三大环节(SFT、RM、PPO)、实操步骤与效果评估。结合LLaMA-Factory工具,手把手带新手完成智能客服模型微调,助力打造贴合人类偏好的AI应用,是入门强化学习对齐的实用指南。
大模型微调技术综述与详细案例解读
本文是一篇理论与实践结合的综述文章,综合性全面介绍大模型微调技术。本文先介绍大模型训练的两类场景:预训练和后训练,了解业界常见的模型训练方法。在后训练介绍内容中,引出模型微调(模型微调是属于后训练的一种)。然后,通过介绍业界常见的模型微调方法,以及通过模型微调实操案例的参数优化、微调过程介绍、微调日志解读,让读者对模型微调有更加直观的了解。最后,我们详细探讨数据并行训练DDP与模型并行训练MP两类模型并行训练技术,讨论在实际项目中如何选择两类并行训练技术。
智能体对传统行业的影响:隐性工作的结构化转译与价值重构
本文探讨AI智能体如何推动隐性工作(如跨部门协调、经验判断等)的显性化与系统化转化,分析其对知识流动、协作模式、决策机制及从业者能力结构的深层影响,强调组织需将行业经验转译为可调用的数字资产,方能赢得技术演进优势。
基于阿里云通义千问开发编程辅助与代码生成工具
随着软件开发需求的增加,编程辅助与代码生成工具成为开发者提高效率的利器。这类工具能够根据用户描述生成代码片段、协助调试、生成自动化脚本等,大大减少重复性劳动。阿里云通义千问作为一款先进的大语言模型,具备强大的自然语言处理和代码生成能力,非常适合用于开发这样的工具。
AI Agent 重构职场逻辑:新一代开发者的职业路线调整框架
AI Agent正重塑职场逻辑:流程型岗位被自动化压缩,经验壁垒被技术抹平。本文从职场变革、能力重构(命题思维/生产力证明/跨界能力)及实践路径三方面,系统梳理开发者适配AI时代的职业新路线。(239字)
大模型应用:从问题到答案:LlamaIndex RAG系统工作流程详解.15
本文深入解析LlamaIndex核心概念与实战:Document(文档封装)、Node(语义切分)、Index(向量检索)、Query Engine(端到端问答)、Retriever(精准检索)及Response Synthesis(智能合成),配套本地Qwen+MiniLM代码示例,助力RAG快速落地。(238字)
【教案生成平台】实战教程二:接入 AI 大模型实现智能教案生成
一款基于 Vue 3 + Vite 的教师辅助工具,聚焦教案智能生成。输入课程主题,AI 流式输出完整教学设计,支持 Markdown 实时预览与 Word 导出,提升备课效率。核心技术涵盖流式 API 调用、提示词工程与文档生成,构建从输入到输出的完整 AI 工作流。
深入剖析 Qwen2.5 - 32B 模型在 VLLM 上的单机三卡部署与运行
本文深入探讨了Qwen2.5 - 32B模型在VLLM框架上的部署过程,从模型下载、启动命令、资源占用分析到GPU资源分配及CUDA图应用,详述了大模型运行的挑战与优化策略,强调了硬件资源规划与技术调优的重要性。
直播带货效率提升300%:这个AI指令让技术人也能写出专业话术
技术人写直播话术太难?逻辑思维 vs 情感营销冲突大,学得慢、改得累。本文分享一套结构化AI指令,将专业带货方法论转化为可执行模板,支持多品类定制,30分钟生成高转化话术,助力开发者高效应对朋友求助或产品推广,轻松玩转直播文案。
# Qwen3-8B 的 TTFT 性能分析:16K 与 32K 输入 Prompt 的推算公式与底层原理详解
Qwen3-8B 是通义实验室推出的 80 亿参数大模型,支持最长 32,768 token 上下文,适用于长文本处理场景。通过 FP8 量化、CUDA Kernel 优化及 RoPE 位置编码技术,提升推理效率与稳定性。模型在 16K 输入下 TTFT 约 150-200ms,32K 输入下约 250-300ms,适用于文档摘要与长对话交互。
AI视频生成也能自动补全!Wan2.1 FLF2V:阿里通义开源14B视频生成模型,用首尾两帧生成过渡动画
万相首尾帧模型是阿里通义开源的14B参数规模视频生成模型,基于DiT架构和高效视频压缩VAE,能够根据首尾帧图像自动生成5秒720p高清视频,支持多种风格变换和细节复刻。
针对【图像生成 - ComfyUI】使用的深度评测
ComfyUI 是一款支持自定义工作流的图像生成工具,适用于创意设计、游戏开发和电商等多个行业。它能根据项目需求灵活调整图像生成流程,提高创意实现效率,同时具备成本效益和弹性伸缩能力,适应业务量变化。尽管如此,ComfyUI 在技术门槛和数据安全方面仍存在挑战,需注意非专业用户的学习曲线和敏感数据保护。
2026 AI 元年:当人工智能不再以“创新项目”的形式出现
本文阐述AI正从“项目制创新”迈向“底座化基础设施”:2026年起,AI不再以独立试点存在,而是作为默认能力嵌入系统底层;工程范式转向概率驱动,经济成本趋近算力水平,交付形态趋于无感智能。厚平台、薄应用成为新结构。
从“会用 AI”到“指挥 AI”:AI调度官能力模型解析
AI调度官是面向多模型协同的新型系统角色,聚焦任务拆解、能力编排与运行约束,实现AI能力的统一调度、闭环管控与稳定执行,支撑可扩展、可解释、可持续演进的智能协同体系。
大模型“驯化”指南:从人类偏好到专属AI,PPO与DPO谁是你的菜?
本文深入解析让AI“懂你”的关键技术——偏好对齐,对比PPO与DPO两种核心方法。PPO通过奖励模型间接优化,适合复杂场景;DPO则以对比学习直接训练,高效稳定,更适合大多数NLP任务。文章涵盖原理、实战步骤、评估方法及选型建议,并推荐从DPO入手、结合低代码平台快速验证。强调数据质量与迭代实践,助力开发者高效驯化大模型,实现个性化输出。
通义百聆语音交互模型开源,创新架构可节省近50%GPU计算!
通义百聆开源新一代语音模型Fun-Audio-Chat-8B,支持语音对语音交互,具备出色共情与情绪感知能力,对话自然流畅。在多项基准测试中超越同级模型,采用高效低算力架构,GPU计算成本降低近50%。支持角色扮演与个性化语音定制,适用于情感陪伴、智能客服等场景,现已开放下载。
GLM-4.7实战指南:三个梯度测试,解锁国产大模型的代码生成与审美上限
国产大模型 GLM-4.7 在前端代码生成与智能体编程(Agentic Coding)上实现突破,凭借强大的逻辑推理、UI 审美与交互设计能力,可媲美 Claude 3.5 Sonnet。实测显示,其在 SVG 生成、网页游戏开发及高级页面设计中表现惊艳,支持长上下文、高性价比 API,成为开发者高效落地 AI 编程的优选工具。
AI Agent 职业路线:从工具使用者到智能体生态构建者
本文探讨AI Agent驱动的职场范式转移:从人机交互迈向人机协同。提出技术从业者三层角色(执行者、协作者、生态管理者),并系统阐述上下文工程、输出校验、智能体调优三大核心能力,以及单点应用→多体编排→生态治理的进阶路径。(239字)
AI Agent 职业路线全解析:从入门到专家的体系化成长路径
本文系统解析AI Agent驱动的软件工程范式变革,面向阿里云开发者,从技术认知、能力图谱、岗位细分到进阶路径,全面梳理Agent时代的职业发展逻辑。涵盖提示工程、架构设计、多Agent协同、云原生落地等核心能力,助力技术人构建面向大模型时代的竞争力。(238字)
通义千问Qwen荣获“领先科技奖”
2025年11月6日,通义千问大模型荣膺世界互联网大会“领先科技奖”。凭借卓越性能与开源贡献,其已开源超300个模型,下载量超6亿次,衍生模型超17万,居全球首位。
智能体(AI Agent)开发实战之【LangChain】(一)接入大模型输出结果
LangChain 是一个开源框架,专为构建与大语言模型(LLMs)相关的应用设计。通过集成多个 API、数据源和工具,助力开发者高效构建智能应用。本文介绍了 LangChain 的环境准备(如安装 LangChain、OpenAI 及国内 DeepSeek 等库)、代码实现(以国内开源大模型 Qwen 为例,展示接入及输出结果的全流程),以及核心参数配置说明。LangChain 的灵活性和强大功能使其成为开发对话式智能应用的理想选择。
自媒体创作场景实践|通义千问3 + MCP=一切皆有可能
本文介绍了通过MCP(Model Context Protocol)结合通义千问大模型实现跨平台、跨服务的自动化任务处理方案。使用Qwen3-235B-A22B模型,配合ComfyUI生成图像,并通过小红书等社交媒体发布内容,展示了如何打破AI云服务的数据孤岛。具体实践包括接入FileSystem、ComfyUI和第三方媒体Server,完成从本地文件读取到生成图像再到发布的全流程。 方案优势在于高可扩展性和易用性,但也存在大模型智能化不足、MCP Server开发难度较大及安全风险等问题。未来需进一步提升模型能力、丰富应用场景并解决安全挑战,推动MCP在更多领域落地。
Agent数量放大后的AI Agent指挥官与AI调度官
随着AI Agent规模扩大,任务冲突、资源争用等问题凸显。本文提出“AI指挥官”(定策略、控目标)与“AI调度官”(管执行、优资源)双角色分层治理机制,构建指挥—调度—执行闭环,提升大规模智能协同的可控性、稳定性与可扩展性。
英伟达三大AI法宝:CUDA、NVLink、InfiniBand——构筑AI时代的算力基石
英伟达三大AI法宝——CUDA(编程层)、NVLink(芯片互连)、InfiniBand(系统互连),构成软硬协同的全栈加速体系:CUDA释放GPU通用算力,NVLink实现多卡高速协同,InfiniBand支撑万卡集群高效通信,共同筑就AI时代的算力基石。(239字)
构建AI智能体:一百、AI模型选择与部署考量:从业务需求到实际落地的思考决策
本文系统介绍了AI模型生态分类与选型方法论。主要内容包括:1)AI模型分类体系,分为通用大语言模型、文本嵌入模型和专业领域模型三大类;2)业务需求分析方法,从功能、性能、用户体验等维度进行需求拆解;3)模型选型决策框架,基于参数量、序列长度等指标建立四阶段评估流程;4)典型场景的模型选择建议,如智能客服推荐中等规模对话模型,内容创作选择大模型等。文章强调模型选择需平衡业务需求、技术指标和资源约束,并提供了代码示例说明不同模型的使用方法。最终指出没有最优模型,只有最适合特定场景的模型选择方案。
微医控股与阿里云达成战略合作,双方将携手基于通义千问大模型联合打造医疗全场景智能体,共同构建医疗垂类大模型
2025年6月17日,微医控股与阿里云达成战略合作,共建医疗AI基座及医疗全场景智能体。双方将基于通义千问大模型打造医疗垂类大模型,升级微医“5+1”智能体,并在诊断、用药、健康管理等环节深化应用。微医将结合阿里云技术优势推进IDC上云,助力AI+医疗基础设施建设,共同制定行业标准并推广城市级AI数字健共体。目前,微医AI服务已连接全国1.2万家医院和30万名医生,健康管理会员超100万。
大模型应用:情感分析模型微调深度分析:从基础预测到性能优化.6
本文系统讲解中文情感分析模型微调后的深度评估方法,涵盖微调流程、预测置信度分析、混淆矩阵可视化、错误模式挖掘及系统性偏差诊断,强调超越准确率的可解释性分析,助力构建可靠、鲁棒的AI系统。
深度测评:DeepSeek 对话导出工具 Top 3,公式不乱码、排版零折损的终极方案
本文为AI技术博主推荐三款高效导出DeepSeek对话的工具:专为iOS/macOS设计的“DS随心转”App,支持多格式且完美保留代码高亮与公式;轻量便捷的浏览器扩展“DeepSeek Share”,适用于Chrome等主流浏览器;以及内置在QQ浏览器中的导出功能,无需额外安装,适合日常快速存档。结合官方导出方式与使用建议,帮助用户根据设备与需求选择最佳方案,同时提醒注意数据隐私与兼容性问题。
AI大模型开发语言排行
AI大模型开发涉及多种编程语言:Python为主流,用于算法研发;C++/CUDA优化性能;Go/Rust用于工程部署;Java适配企业系统;Julia等小众语言用于科研探索。
大模型进阶微调篇(一):以定制化3B模型为例,各种微调方法对比-选LoRA还是PPO,所需显存内存资源为多少?
本文介绍了两种大模型微调方法——LoRA(低秩适应)和PPO(近端策略优化)。LoRA通过引入低秩矩阵微调部分权重,适合资源受限环境,具有资源节省和训练速度快的优势,适用于监督学习和简单交互场景。PPO基于策略优化,适合需要用户交互反馈的场景,能够适应复杂反馈并动态调整策略,适用于强化学习和复杂用户交互。文章还对比了两者的资源消耗和适用数据规模,帮助读者根据具体需求选择最合适的微调策略。
大模型应用:基于本地大模型的中文命名实体识别技术实践与应用
本文探讨了基于本地部署的大模型在命名实体识别(NER)任务中的应用优势。通过通用领域中文NER和医疗领域专用NER两个典型案例,展示了本地大模型在数据安全、响应速度和识别精度方面的显著优势。通用领域采用RoBERTa模型在CLUENER2020数据集上微调,可识别10类实体;医疗领域基于BERT架构的专用模型,在CMEEE数据集上训练,准确识别疾病、症状等医疗实体。本地部署不仅满足合规要求,还能通过领域自适应提升专业文本识别效果,为各行业智能化转型提供可靠技术方案。
从技术热度到产品心智,豆包为何全面反超 DeepSeek?
AIWW数据显示,2025年12月起,豆包全网关注度稳定超越DeepSeek,且领先优势持续扩大。相较DeepSeek的技术驱动路径,豆包依托字节流量、多模态升级和任务执行能力,实现产品化突破,反映用户心智与行业格局的深层变迁。
国产AI封神!炒股狂赚40%碾压对手 教你微调Qwen3打造专属金融分析师
国产AI在实盘炒股中大放异彩,DeepSeek与Qwen3收益率最高超60%,碾压国际大模型。本文教你用LLaMA Factory平台微调Qwen3-VL-30B,打造专属多模态金融分析师,实现趋势研判、财报分析等专业能力,赋能投资决策。
一个帮运营写产品详情页的AI指令
分享一套实用的电商详情页AI生成指令模板,涵盖标题、卖点、场景、参数、保障等核心模块,帮助运营、产品经理等快速产出80分初稿,大幅提升效率。适配主流AI工具,结合人工优化,轻松应对多平台需求。
在云上搭建CosyVoice环境-保姆级教程
发现个好玩的模型,阿里最近开源的,可以便捷的复刻人声,本文提供全套安装过程。仓库地址:https://github.com/FunAudioLLM/CosyVoice。
周报不是流水账,这个AI指令帮你写出让老板点赞的工作汇报
一个帮助技术人快速生成专业工作周报的AI指令,通过结构化输入和价值导向表达,让你的周报从流水账变成让老板点赞的高质量汇报,15分钟搞定原本需要1小时的周报撰写。
渗透技术--sqlmap使用
Sqlmap是一款自动化SQL注入工具,支持MySQL、Oracle、PostgreSQL等多种数据库。它可扫描并利用URL中的SQL注入漏洞,提供丰富的参数选项,如查询数据库、表、字段,支持POST注入、代理设置及写入文件等功能,适用于安全测试与漏洞评估。
Qwen2-VL微调实战:LaTex公式OCR识别任务(完整代码)
《SwanLab机器学习实战教程》推出了一项基于Qwen2-VL大语言模型的LaTeX OCR任务,通过指令微调实现多模态LLM的应用。本教程详述了环境配置、数据集准备、模型加载、SwanLab集成及微调训练等步骤,旨在帮助开发者轻松上手视觉大模型的微调实践。
CosyVoice 与 SenseVoice:阿里FunAudioLLM两大语音生成项目的深度评测
近年来,基于大模型的语音人工智能技术发展迅猛,为自然语音人机交互带来新的可能。通义语音大模型无疑是这一领域的佼佼者。它涵盖了语音理解与语音生成两大核心能力,可支持多种语音任务,包括多语种语音识别、语种识别、情感识别、声音事件检测以及语音合成等
基于通义多模态大模型的实时音视频交互
Qwen-Omni是通义千问系列的全新多模态大模型,支持文本、图像、音频和视频的输入,并输出文本和音频。Omni-Realtime服务针对实时交互场景优化,提供低延迟的人机交互体验。
通义首个音频生成模型 ThinkSound 开源,你的专业音效师
通义实验室推出首个音频生成模型ThinkSound,突破传统视频到音频生成技术局限,首次将思维链(CoT)应用于音频生成领域,实现高保真、强同步的空间音频生成。基于自研AudioCoT数据集,结合多模态大语言模型与统一音频生成模型,支持交互式编辑,显著提升音画匹配度与时序一致性。代码已开源,助力游戏、VR、AR等场景创新应用。
通义千问推理模型QwQ-32B开源,更小尺寸、更强性能
阿里云发布并开源全新推理模型通义千问QwQ-32B,通过大规模强化学习,在数学、代码及通用能力上实现质的飞跃,性能比肩DeepSeek-R1。该模型大幅降低部署成本,支持消费级显卡本地部署,并集成智能体Agent相关能力。阿里云采用Apache2.0协议全球开源,用户可通过通义APP免费体验。此外,通义团队已开源200多款模型,覆盖全模态和全尺寸。
通义大模型:中国AI领域的新里程碑
本文介绍了阿里巴巴达摩院研发的“通义大模型”系列,该模型在2025年已成为AI领域的重要里程碑。通义大模型拥有超大规模参数、多模态融合、高效训练框架和中文优化等技术特点,在智能客服、内容创作、教育和企业服务等多个场景实现应用。未来,它将在多模态能力、小样本学习、安全性及应用场景拓展等方面持续突破,推动中国AI技术进步与行业智能化转型。
基于qwen2和qwenvl的自动批改作业应用!
针对作业批改中常见的问题,如低质量作业、大量简单作业耗时、需初筛异常作业等,开发了一款自动批改作业的应用。该应用通过备份作业文件、获取文档内容、利用AI生成评语,并保存关键信息与日志,简化了教师的工作流程,提高了效率。应用设计简洁,易于扩展,支持图片转文字处理,适合教育场景使用。