Spring Cloud Alibaba AI 入门与实践

本文涉及的产品
视觉智能开放平台,分割抠图1万点
NLP自然语言处理_基础版,每接口每天50万次
视觉智能开放平台,图像资源包5000点
简介: 本文将介绍 Spring Cloud Alibaba AI 的基本概念、主要特性和功能,并演示如何完成一个在线聊天和在线画图的 AI 应用。

封面.png

一、概述

Spring AISpring 官方社区项目,旨在简化 Java AI 应用程序开发,让 Java 开发者像使用 Spring 开发普通应用一样开发 AI 应用。

Spring Cloud Alibaba AI 是一个将 Spring Cloud 微服务生态与阿里巴巴 AI 能力无缝集成的框架,帮助开发者快速构建具备 AI 功能的现代化应用。本文将介绍 Spring Cloud Alibaba AI 的基本概念、主要特性和功能,并演示如何完成一个 在线聊天在线画图AI 应用。

 

二、主要特性和功能

Spring Cloud Alibaba AI 目前基于 Spring AI 0.8.1 版本 API 完成通义系列大模型的接入。通义接入是基于阿里云 阿里云百炼 服务;而 阿里云百炼 建立在 模型即服务(MaaS) 的理念基础之上,围绕 AI 各领域模型,通过标准化的 API 提供包括模型推理、模型微调训练在内的多种模型服务。

主要提供以下核心功能:

2.1. 简单易用的集成

通过 Spring Boot 风格的自动配置机制,开发者只需少量代码配置,即可快速接入阿里云的 AI 服务。

2.2. 丰富的 AI 服务支持

支持以下核心能力:

  • 自然语言处理(NLP):文本分析、智能问答、翻译。
  • 计算机视觉(CV):图像生成、图像识别、目标检测。
  • 语音处理:语音识别、语音合成。
  • 数据分析与预测:数据建模、趋势分析。

2.3. 高度扩展性

通过配置中心和注册中心(如 Nacos)实现动态扩展,支持微服务架构的扩展需求。
提供接口定义,方便接入第三方 AI 平台。

 

三、构建 AI 应用

Spring Cloud Alibaba AI 对 Java 版本有要求,所以需要提前预装好 Java 17 环境。

3.1. 申请 API-KEY

登录阿里云,进入 阿里云百炼 的页面:

https://bailian.console.aliyun.com/?apiKey=1#/api-key

创建自己的 API-KEY

1-apikey.jpg

3.2. 添加依赖

Spring Boot 项目的 pom.xml 中添加 alibaba-ai 依赖

<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-ai</artifactId>
</dependency>

<repositories>
    <repository>
        <id>alimaven</id>
        <url>https://maven.aliyun.com/repository/public</url>
    </repository>
    <repository>
        <id>spring-milestones</id>
        <url>https://repo.spring.io/milestone</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
    <repository>
        <id>spring-snapshots</id>
        <url>https://repo.spring.io/snapshot</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
</repositories>

 

3.3. 配置 API-KEY

application.yml 中配置 Kafka 的相关属性,包括服务器地址、认证信息等。

spring:
  cloud:
    ai:
      tongyi:
        connection:
          api-key: sk-xxxxxx
  • api-key 配置在阿里云百炼里申请的api-key

3.4. 创建模型调用服务

@Service
@Slf4j
public class TongYiSimpleService {
   
    @Resource
    private TongYiChatModel chatClient;
    @Resource
    private TongYiImagesModel imageClient;

    public String chat(String message) {
   
        Prompt prompt = new Prompt(new UserMessage(message));
        return chatClient.call(prompt).getResult().getOutput().getContent();
    }

    public String image(String message) {
   
        ImagePrompt prompt = new ImagePrompt(message);
        Image image = imageClient.call(prompt).getResult().getOutput();
        return image.getB64Json();
    }
}

聊天和图片的服务,分别通过注入 TongYiChatModelTongYiImagesModel 对象来实现,屏蔽底层通义大模型交互细节。

3.5. 创建controller

@RestController
@RequestMapping("/ai")
public class TongYiController {
   
    @Resource
    private TongYiSimpleService tongYiSimpleService;

    @GetMapping("/chat")
    public String chat(@RequestParam(value = "message") String message) {
   
        return tongYiSimpleService.chat(message);
    }

    @GetMapping("/image")
    public ResponseEntity<byte[]> image(@RequestParam(value = "message") String message) {
   
        String b64Str = tongYiSimpleService.image(message);
        byte[] imageBytes = Base64.getDecoder().decode(b64Str);
        HttpHeaders headers = new HttpHeaders();
        headers.setContentType(MediaType.IMAGE_JPEG);
        return new ResponseEntity<>(imageBytes, headers, HttpStatus.OK);
    }
}

3.6. 测试效果

3.6.1. 聊天接口

在浏览器输入:http://localhost:8009/ai/chat?message=你是谁

2-chat测试.jpg

3.6.2. 图片接口

在浏览器输入:http://localhost:8009/ai/image?message=意大利面拌42号混凝土

3-image模型.png

3.6.3. 搭配聊天页面

4-chat模型.png

四、总结

当前版本的 Spring Cloud Alibaba AI 主要完成了几种常见生成式模型的适配,涵盖对话、文生图、文生语音等。在未来的版本中将继续推进 VectorStoreEmbeddingETL PipelineRAG 等更多 AI 应用开发场景的建设。

完整的样例代码下载:
https://gitee.com/zlt2000/spring-cloud-ai-sample

目录
相关文章
|
20天前
|
人工智能 算法 计算机视觉
【01】opencv项目实践第一步opencv是什么-opencv项目实践-opencv完整入门以及项目实践介绍-opencv以土壤和水滴分离的项目实践-人工智能AI项目优雅草卓伊凡
【01】opencv项目实践第一步opencv是什么-opencv项目实践-opencv完整入门以及项目实践介绍-opencv以土壤和水滴分离的项目实践-人工智能AI项目优雅草卓伊凡
119 62
【01】opencv项目实践第一步opencv是什么-opencv项目实践-opencv完整入门以及项目实践介绍-opencv以土壤和水滴分离的项目实践-人工智能AI项目优雅草卓伊凡
|
1月前
|
消息中间件 人工智能 运维
1月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
1643 61
1月更文特别场——寻找用云高手,分享云&AI实践
|
13天前
|
人工智能 数据挖掘
低代码 + AI 落地实践,让业务效率翻倍,解锁未来生产力!
2025年春节,DeepSeek引发AI讨论热潮,推动“数字化”到“数智化”的革新。低代码+AI组合降低了技术门槛,加速企业智能化升级。文中通过食品加工业原料溯源、家电售后管理、发票识别打印三个案例,展示其在效率提升和市场竞争力中的作用,并介绍钉钉宜搭举办的“低代码+AI”视频创作大赛,邀请读者参与探索更多实际应用。
564 9
|
9天前
|
人工智能 关系型数据库 分布式数据库
PolarDB 开源基础教程系列 7.4 应用实践之 AI大模型外脑
PolarDB向量数据库插件通过实现通义大模型AI的外脑,解决了通用大模型无法触达私有知识库和产生幻觉的问题。该插件允许用户将新发现的知识和未训练的私有知识分段并转换为向量,存储在向量数据库中,并创建索引以加速相似搜索。当用户提问时,系统将问题向量化并与数据库中的向量进行匹配,找到最相似的内容发送给大模型,从而提高回答的准确性和相关性。此外,PolarDB支持多种编程语言接口,如Python,使数据库具备内置AI能力,极大提升了数据处理和分析的效率。
38 4
|
29天前
|
机器学习/深度学习 存储 人工智能
AI实践:智能工单系统的技术逻辑与应用
智能工单系统是企业服务管理的核心工具,通过多渠道接入、自然语言处理等技术,实现工单自动生成、分类和分配。它优化了客户服务流程,提高了效率与透明度,减少了运营成本,提升了客户满意度。系统还依托知识库和机器学习,持续改进处理策略,助力企业在竞争中脱颖而出。
97 5
|
1月前
|
存储 人工智能 缓存
面向AI的存储软硬结合实践和创新
本次分享的主题是面向AI的存储软硬结合实践和创新,由阿里云智能集团专家袁茂军、王正勇和常存银主讲。内容涵盖三大板块:自研存储部件设计及实践、自研存储服务器设计及实践、以及面向AI场景的存储软硬一体解决方案及实践。重点介绍AliFlash系列存储部件的演进与优化,包括QLC SSD的设计挑战与解决方案,并探讨了高性能存储服务器在AI场景中的应用与未来发展方向。通过软硬件深度融合,旨在提升AI业务的性能与效率,降低总拥有成本(TCO)。
|
1月前
|
人工智能 安全 Java
AI 时代:从 Spring Cloud Alibaba 到 Spring AI Alibaba
本次分享由阿里云智能集团云原生微服务技术负责人李艳林主讲,主题为“AI时代:从Spring Cloud Alibaba到Spring AI Alibaba”。内容涵盖应用架构演进、AI agent框架发展趋势及Spring AI Alibaba的重磅发布。分享介绍了AI原生架构与传统架构的融合,强调了API优先、事件驱动和AI运维的重要性。同时,详细解析了Spring AI Alibaba的三层抽象设计,包括模型支持、工作流智能体编排及生产可用性构建能力,确保安全合规、高效部署与可观测性。最后,结合实际案例展示了如何利用私域数据优化AI应用,提升业务价值。
143 4
|
1月前
|
人工智能 Java API
阿里云工程师跟通义灵码结伴编程, 用Spring AI Alibaba来开发 AI 答疑助手
本次分享的主题是阿里云工程师跟通义灵码结伴编程, 用Spring AI Alibaba来开发 AI 答疑助手,由阿里云两位工程师分享。
阿里云工程师跟通义灵码结伴编程, 用Spring AI Alibaba来开发 AI 答疑助手
|
1月前
|
存储 人工智能 数据管理
云端问道17期方案教学-AI场景下的对象存储OSS数据管理实践
本文介绍了AI场景下的对象存储OSS数据管理实践,由阿里云技术专家明锦分享。主要内容分为两部分:1) AI场景下对象存储实践方案,包括对象存储的应用、优势及在模型推理中的优化;2) OSS常用工具介绍,如OSSFS、Python SDK、Go SDK等,并详细说明了这些工具的特点和使用场景。文中还探讨了不同模式下的性能优化,以及即将推出的OS Connector for AI/ML工具,旨在提升数据下载速度和IO性能。
|
Java 测试技术 Spring
SPRING实践总结--参数注解的使用
今天用spring 搭建测试模型过程中发现web接收参数的注解使用方式各有不同,在不同场景下的使用方式总结了一下 @RequestBody 获取POST请求中的参数,请求参数会放到MAP里 @RequestMapping(value = "/doQueryTempReq", method = RequestMethod.
1028 0