Spring Cloud Alibaba AI 入门与实践

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 本文将介绍 Spring Cloud Alibaba AI 的基本概念、主要特性和功能,并演示如何完成一个在线聊天和在线画图的 AI 应用。

封面.png

一、概述

Spring AISpring 官方社区项目,旨在简化 Java AI 应用程序开发,让 Java 开发者像使用 Spring 开发普通应用一样开发 AI 应用。

Spring Cloud Alibaba AI 是一个将 Spring Cloud 微服务生态与阿里巴巴 AI 能力无缝集成的框架,帮助开发者快速构建具备 AI 功能的现代化应用。本文将介绍 Spring Cloud Alibaba AI 的基本概念、主要特性和功能,并演示如何完成一个 在线聊天在线画图AI 应用。

 

二、主要特性和功能

Spring Cloud Alibaba AI 目前基于 Spring AI 0.8.1 版本 API 完成通义系列大模型的接入。通义接入是基于阿里云 阿里云百炼 服务;而 阿里云百炼 建立在 模型即服务(MaaS) 的理念基础之上,围绕 AI 各领域模型,通过标准化的 API 提供包括模型推理、模型微调训练在内的多种模型服务。

主要提供以下核心功能:

2.1. 简单易用的集成

通过 Spring Boot 风格的自动配置机制,开发者只需少量代码配置,即可快速接入阿里云的 AI 服务。

2.2. 丰富的 AI 服务支持

支持以下核心能力:

  • 自然语言处理(NLP):文本分析、智能问答、翻译。
  • 计算机视觉(CV):图像生成、图像识别、目标检测。
  • 语音处理:语音识别、语音合成。
  • 数据分析与预测:数据建模、趋势分析。

2.3. 高度扩展性

通过配置中心和注册中心(如 Nacos)实现动态扩展,支持微服务架构的扩展需求。
提供接口定义,方便接入第三方 AI 平台。

 

三、构建 AI 应用

Spring Cloud Alibaba AI 对 Java 版本有要求,所以需要提前预装好 Java 17 环境。

3.1. 申请 API-KEY

登录阿里云,进入 阿里云百炼 的页面:

https://bailian.console.aliyun.com/?apiKey=1#/api-key

创建自己的 API-KEY

1-apikey.jpg

3.2. 添加依赖

Spring Boot 项目的 pom.xml 中添加 alibaba-ai 依赖

<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-ai</artifactId>
</dependency>

<repositories>
    <repository>
        <id>alimaven</id>
        <url>https://maven.aliyun.com/repository/public</url>
    </repository>
    <repository>
        <id>spring-milestones</id>
        <url>https://repo.spring.io/milestone</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
    <repository>
        <id>spring-snapshots</id>
        <url>https://repo.spring.io/snapshot</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
</repositories>

 

3.3. 配置 API-KEY

application.yml 中配置 Kafka 的相关属性,包括服务器地址、认证信息等。

spring:
  cloud:
    ai:
      tongyi:
        connection:
          api-key: sk-xxxxxx
  • api-key 配置在阿里云百炼里申请的api-key

3.4. 创建模型调用服务

@Service
@Slf4j
public class TongYiSimpleService {
   
    @Resource
    private TongYiChatModel chatClient;
    @Resource
    private TongYiImagesModel imageClient;

    public String chat(String message) {
   
        Prompt prompt = new Prompt(new UserMessage(message));
        return chatClient.call(prompt).getResult().getOutput().getContent();
    }

    public String image(String message) {
   
        ImagePrompt prompt = new ImagePrompt(message);
        Image image = imageClient.call(prompt).getResult().getOutput();
        return image.getB64Json();
    }
}

聊天和图片的服务,分别通过注入 TongYiChatModelTongYiImagesModel 对象来实现,屏蔽底层通义大模型交互细节。

3.5. 创建controller

@RestController
@RequestMapping("/ai")
public class TongYiController {
   
    @Resource
    private TongYiSimpleService tongYiSimpleService;

    @GetMapping("/chat")
    public String chat(@RequestParam(value = "message") String message) {
   
        return tongYiSimpleService.chat(message);
    }

    @GetMapping("/image")
    public ResponseEntity<byte[]> image(@RequestParam(value = "message") String message) {
   
        String b64Str = tongYiSimpleService.image(message);
        byte[] imageBytes = Base64.getDecoder().decode(b64Str);
        HttpHeaders headers = new HttpHeaders();
        headers.setContentType(MediaType.IMAGE_JPEG);
        return new ResponseEntity<>(imageBytes, headers, HttpStatus.OK);
    }
}

3.6. 测试效果

3.6.1. 聊天接口

在浏览器输入:http://localhost:8009/ai/chat?message=你是谁

2-chat测试.jpg

3.6.2. 图片接口

在浏览器输入:http://localhost:8009/ai/image?message=意大利面拌42号混凝土

3-image模型.png

3.6.3. 搭配聊天页面

4-chat模型.png

四、总结

当前版本的 Spring Cloud Alibaba AI 主要完成了几种常见生成式模型的适配,涵盖对话、文生图、文生语音等。在未来的版本中将继续推进 VectorStoreEmbeddingETL PipelineRAG 等更多 AI 应用开发场景的建设。

完整的样例代码下载:
https://gitee.com/zlt2000/spring-cloud-ai-sample

目录
相关文章
|
5天前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
17 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
5天前
|
人工智能 监控 安全
云端问道18期实践教学-AI 浪潮下的数据安全管理实践
本文主要介绍AI浪潮下的数据安全管理实践,主要分为背景介绍、Access Point、Bucket三个部分
33 16
|
5天前
|
人工智能 弹性计算 自然语言处理
云端问道 6 期实践教学-创意加速器:AI 绘画创作
本文介绍了在阿里云平台上一键部署Demo应用的步骤。部署完成后,通过公网地址体验Demo应用,包括文本生成图像等功能。
22 10
|
4天前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案。
|
4天前
|
人工智能 容灾 Serverless
AI推理新纪元,PAI全球化模型推理服务的创新与实践
本次分享主题为“AI推理新纪元,PAI全球化模型推理服务的创新与实践”,由阿里云高级产品经理李林杨主讲。内容涵盖生成式AI时代推理服务的变化与挑战、play IM核心引擎的优势及ES专属网关的应用。通过LM智能路由、多模态异步生成等技术,PAI平台实现了30%以上的成本降低和显著性能提升,确保全球客户的业务稳定运行并支持异地容灾,目前已覆盖16个地域,拥有10万张显卡的推理集群。
|
10天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
144 97
|
15天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
48 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
3天前
|
机器学习/深度学习 人工智能 监控
AI在交通管理系统中的应用
AI在交通管理系统中的应用
31 23
|
14天前
|
人工智能 前端开发 Java
Spring AI Alibaba + 通义千问,开发AI应用如此简单!!!
本文介绍了如何使用Spring AI Alibaba开发一个简单的AI对话应用。通过引入`spring-ai-alibaba-starter`依赖和配置API密钥,结合Spring Boot项目,只需几行代码即可实现与AI模型的交互。具体步骤包括创建Spring Boot项目、编写Controller处理对话请求以及前端页面展示对话内容。此外,文章还介绍了如何通过添加对话记忆功能,使AI能够理解上下文并进行连贯对话。最后,总结了Spring AI为Java开发者带来的便利,简化了AI应用的开发流程。
224 0