搜索推荐

首页 标签 搜索推荐
# 搜索推荐 #
关注
32807内容
|
4天前
| |
来自: 云原生
云原生AI赋能文旅数智化转型:玄晶引擎AI数字员工落地长白山康养项目全解析
本文以长白山大健康企业为例,介绍其通过玄晶引擎云原生AI数字员工实现“养生+文旅”模式智能化升级的实践。涵盖技术架构、运营适配、营销创新与落地经验,展现AI在内容生产、客服转化、B端获客等环节的全链路赋能,助力企业收益率提升47%、团队扩张35%,为文旅产业数智化转型提供可复用范本。
|
4天前
|
昇腾RecSDK Torch整体方案介绍
RecSDK是基于昇腾平台的搜索推荐广告框架,支持Atlas系列硬件,兼容TensorFlow/PyTorch,提供高效模型训练。具备动态特征管理、多级缓存、算子优化、流水线并行等核心能力,实现计算与存储协同加速,助力大规模推荐系统高效开发与部署。(238字)
|
4天前
|
08_昇腾推荐系统加速算子:FBGEMM算子库
FBGEMM算子库适配昇腾平台,支持Torchrec模型在DCNV2和GR等推荐模型中的高效运行。已完成JaggedToPaddedDense、DenseToJagged、HstuDenseForward/Backward等核心算子的移植与优化,并引入自定义算子提升生成式推荐性能,助力推荐系统训练加速。
|
4天前
|
04_昇腾推荐系统:单双层架构解析
单双层架构互补共存:单层追求极致性能,适用于小规模特征;双层突破内存瓶颈,支持大规模扩展。结合动态扩容、准入淘汰与高效查表,实现推荐系统大规模稀疏参数的高效训练与管理。
|
4天前
|
05_推荐系统准入与淘汰策略技术详解
本文详解推荐系统多级缓存中的准入淘汰策略,涵盖基于访问频次、概率、ShowClick等准入机制,以及基于时间、L2范数、频次等淘汰机制,结合CPU-PS控制流程与NPU执行优化,实现缓存资源高效利用,提升模型训练效率与推荐精度。
|
4天前
|
03_嵌入表分片与哈希管理:支撑万亿参数的关键技术
本文介绍支撑万亿参数推荐系统的核心技术:嵌入表分片与哈希管理。通过单/双层Hash模式实现稀疏ID高效映射,结合分桶策略均匀分配数据;采用Row-Wise、Table-Wise等分片机制,优化存储与计算负载,提升大规模模型训练效率。
|
4天前
|
02_昇腾推荐系统架构解析:嵌入表存储到多级缓存的全链路设计
昇腾推荐系统采用多级缓存架构,基于达芬奇架构NPU实现HBM与DDR协同的Embedding存储。通过FastHashMap与动态Swap机制,结合LRU/LFU准入淘汰策略,支持大规模稀疏特征高效训练。软件层面深度适配TorchRec,提供统一接口,实现计算与通信重叠,提升端到端性能,适用于电商、短视频等大模型推荐场景。
|
4天前
|
01_万亿级推荐系统嵌入表的技术挑战与现状
推荐系统中,Embedding表规模随用户与物品增长呈指数膨胀,成为存储与计算瓶颈。传统静态存储导致冗余,而生成式模型更需高维向量与海量参数,加剧资源压力。业界通过Embedding卸载、多级缓存、预取流水线与分片优化等技术,在有限显存下实现超大规模模型训练。美团MTGR框架基于TorchRec构建,支持TB级Embedding与混合并行,显著提升训练效率与推荐效果,推动推荐系统向生成式演进。
免费试用