查看 PCD 点云 windows
在Linux系统查看PCD 点云有许多方法,但发现在windows下的工具比较少,这里分享两个思路,一个是使用MATLAB工具编程,另一个是下载CloudCompare软件进行查看点云。
NLP领域再创佳绩!阿里云机器学习平台 PAI 多篇论文入选 ACL 2023
阿里云机器学习平台PAI主导的多篇论文在ACL 2023 Industry Track上入选。
使用Databricks+Mlflow进行机器学习模型的训练和部署【Databricks 数据洞察公开课】
介绍如何使用Databricks和MLflow搭建机器学习生命周期管理平台,实现从数据准备、模型训练、参数和性能指标追踪、以及模型部署的全流程。
基于实时深度学习的推荐系统架构设计和技术演进
整理自 5 月 29 日 阿里云开发者大会,秦江杰和刘童璇的分享,内容包括实时推荐系统的原理以及什么是实时推荐系统、整体系统的架构及如何在阿里云上面实现,以及关于深度学习的细节介绍
十大行业经典案例!Apache Flink 的 40 个最佳实践
如今,Apache Flink 行业应用几何?在降本增效的需求驱动下,企业如何实现数据与算力价值最大化?本文整理了 Flink 社区近一年的社区案例,并按照行业进行分类,供大家参考!
Flink SQL 实战:双流 join 场景应用
大家都知道在使用 SQL 进行数据分析的过程中,join 是经常要使用的操作。在离线场景中,join 的数据集是有边界的,可以缓存数据有边界的数据集进行查询,有Nested Loop/Hash Join/Sort Merge Join 等多表 join;而在实时场景中,join 两侧的数据都是无边界的数据流,所以缓存数据集对长时间 job 来说,存储和查询压力很大。如何从容应对各种流式场景?
浅析CPU结构对程序的影响以及熔断原理
## CPU 结构简介 ### CPU 指令结构 * 下表列出了CPU关键技术的发展历程以及代表系列,每一个关键技术的诞生都是环环相扣的,处理器这些技术发展历程都围绕着如何不让“CPU闲下来”这一个核心目标展开。
【玩转数据系列五】农业贷款发放预测
很多农民因为缺乏资金,在每年耕种前会向相关机构申请贷款来购买种地需要的物资,等丰收之后偿还。农业贷款发放问题是一个典型的数据挖掘问题。贷款发放人通过往年的数据,包括贷款人的年收入、种植的作物种类、历史借贷信息等特征来构建经验模型,通过这个模型来预测受贷人的还款能力。
RAG 里,什么时候该让模型“少看一点”
本文揭示RAG系统常见误区:盲目扩大TopK、增加文档量,实则导致“证据过载”,诱发模型强行综合、自信出错。核心观点:**“多看”不等于“更准”,反会稀释判断力;成熟RAG的关键,在于懂得何时主动“少看”**——守住模型的犹豫权与判断阈值。
相似度搜索 ≠ 语义理解:向量数据库的能力边界
本文直击RAG系统常见误区:向量数据库只解决“相似性检索”,不等于“语义理解”。它能高效召回“看起来相关”的内容,但无法判断概念等价、逻辑冲突、条件限制或信息可用性。混淆二者是多数故障根源。正确认知其边界,方能工程化落地。
为什么微调会放大训练数据中的隐私残留
本文揭示一个反直觉真相:模型隐私风险多在微调后才凸显,而非预训练阶段。微调并非“创造”隐私信息,而是放大模型中已存在的隐性模式(如身份指向、行为细节),尤其LoRA等高效方法更易固化风险。关键在于警惕“过度具体化”输出——它比直接泄露更隐蔽、更危险。
LoRA rank 越大越好?你可能在放大不可控行为
本文揭示LoRA微调中最隐蔽的陷阱:rank并非“效果旋钮”,而是“行为自由度开关”。调大rank不等于提升能力,实则放大不可控行为——松绑参数约束、固化数据隐性偏好、削弱可解释性,并掩盖系统设计缺陷。安全使用的关键,在于以“能否清晰归因风险”为阈值,而非追求表面效果。
必应SEO优化方法:提升网站在必应搜索引擎排名的实用策略
必应(Bing)为全球第二大搜索引擎,做好其SEO优化可显著提升网站曝光、获取精准流量。本文系统梳理五大核心策略:关键词研究(善用Bing工具、聚焦长尾词)、网站结构、内容质量、技术优化(速度/移动端/HTTPS)及高质量外链建设,并提供进阶建议。(239字)
Python | Stacking回归和SHAP可解释性分析回归预测及可视化算法
本教程基于Python实现Stacking回归与SHAP可解释性分析,涵盖地球科学、医学、工程等多领域回归预测应用。结合CatBoost、LightGBM、XGBoost等模型,采用贝叶斯、随机与网格搜索优化参数,并通过SHAP值可视化特征贡献,提升模型性能与可解释性,适用于科研与实际项目。
大模型微调技术入门:从核心概念到实战落地全攻略
大模型微调是通过特定数据优化预训练模型的技术,实现任务专属能力。全量微调精度高但成本大,LoRA/QLoRA等高效方法仅调部分参数,显存低、速度快,适合工业应用。广泛用于对话定制、领域知识注入、复杂推理与Agent升级。主流工具如LLaMA-Factory、Unsloth、Swift等简化流程,配合EvalScope评估,助力开发者低成本打造专属模型。
2026数字人公司TOP企业排行
随着AI、图形学等技术进步,数字人产业快速发展。2025年我国相关企业超1200家,规模突破300亿元。阿里、华为、腾讯、世优科技等企业在电商、通信、社交、AI交互等领域领先,推动数字人在金融、政务、教育等场景落地。技术趋同下,全栈能力与行业理解成竞争关键。
Hologres Dynamic Table:高效增量刷新,构建实时统一数仓的核心利器
在实时数据架构中,Hologres Dynamic Table 基于有状态增量计算模型,有效解决“海量历史+少量新增”场景下的数据刷新难题。相比传统全量刷新,其通过持久化中间状态,实现复杂查询下的高效增量更新,显著降低延迟与资源消耗,提升实时数仓性能与运维效率。
整合切面,参数拦截+过滤
该类基于Spring AOP实现请求参数的前置拦截与日志记录,自动捕获Controller层请求的URL、方式、参数及响应方法,并记录执行耗时,便于调试与监控,支持后续扩展如数据脱敏或存储。
AI 十大论文精讲(五):RAG——让大模型 “告别幻觉、实时更新” 的检索增强生成秘籍
本文解读AI十大核心论文之五——《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》。该论文提出RAG框架,通过“检索+生成”结合,解决大模型知识更新难、易幻觉、缺溯源等问题,实现小模型高效利用外部知识库,成为当前大模型落地的关键技术。
ODPS 十五周年实录 | Data + AI,MaxCompute 下一个15年的新增长引擎
本文根据 ODPS 十五周年·年度升级发布实录整理而成,演讲信息如下: 于得水(得水):阿里云智能集团计算平台事业部资深技术专家 活动:【数据进化·AI 启航】ODPS 年度升级发布
【跨国数仓迁移最佳实践6】MaxCompute SQL语法及函数功能增强,10万条SQL转写顺利迁移
本系列文章将围绕东南亚头部科技集团的真实迁移历程展开,逐步拆解 BigQuery 迁移至 MaxCompute 过程中的关键挑战与技术创新。本篇为第六篇,MaxCompute SQL语法及函数功能增强。 注:客户背景为东南亚头部科技集团,文中用 GoTerra 表示。
基于yolo8的深度学习室内火灾监测识别系统
本研究基于YOLO8算法构建室内火灾监测系统,利用计算机视觉技术实现火焰与烟雾的实时识别。相比传统传感器,该系统响应更快、精度更高,可有效提升火灾初期预警能力,保障生命财产安全,具有重要的应用价值与推广前景。
YOLOv11浅浅解析:架构创新
YOLOv11是YOLO系列最新升级版,通过C3k2模块、SPPF优化和解耦检测头等创新,显著提升检测精度与速度,mAP提高2-5%,推理更快,支持多平台部署,适用于工业、安防、自动驾驶等场景。
Proximal SFT:用PPO强化学习机制优化SFT,让大模型训练更稳定
本文介绍了一种改进的监督微调方法——Proximal Supervised Fine-Tuning (PSFT),旨在解决传统SFT易过拟合、泛化能力差及导致“熵坍塌”的问题。受PPO强化学习算法启发,PSFT通过引入参数更新的稳定性机制,防止模型在训练中变得过于确定,从而提升探索能力与后续强化学习阶段的表现。实验表明,PSFT在数学推理、模型对齐及泛化能力方面均优于传统SFT。
Windows无法连接到打印机,请检查打印机名并重试 - 配置Windows 共享打印机出错;
WIN7共享打印机无法被WIN11连接,出现错误代码0x0000011b或0x00000709,可能是系统版本不兼容所致。本文提供多个轻量级修复工具,无需安装,双击即用,专为解决此类小问题设计,操作简单,适合普通用户快速修复打印机连接异常。
构建智能AI记忆系统:多智能体系统记忆机制的设计与技术实现
本文探讨了多智能体系统中记忆机制的设计与实现,提出构建精细化记忆体系以模拟人类认知过程。文章分析了上下文窗口限制的技术挑战,并介绍了四种记忆类型:即时工作记忆、情节记忆、程序性记忆和语义知识系统。通过基于文件的工作上下文记忆、模型上下文协议的数据库集成以及RAG系统等技术方案,满足不同记忆需求。此外,高级技术如动态示例选择、记忆蒸馏和冲突解决机制进一步提升系统智能化水平。总结指出,这些技术推动智能体向更接近人类认知的复杂记忆处理机制发展,为人工智能开辟新路径。
基于马尔可夫链的状态转换,用概率模型预测股市走势
本文探讨了马尔可夫链在股市分析中的应用,通过定义市场状态和构建转移矩阵,揭示短期波动与长期趋势的概率特征。模型基于“无记忆性”假设,量化状态转换概率,帮助评估风险、识别模式并制定策略。例如,计算稳态分布可预测市场长期平衡态。尽管模型简化了复杂动态,但仍为投资决策提供了数据支持。同时,文章强调其局限性,如外部冲击影响和状态定义主观性,建议结合其他工具综合分析。未来可探索与机器学习融合,提升市场理解深度。
DistilQwen2.5-R1发布:知识蒸馏助推小模型深度思考
DistilQwen2.5-R1通过知识蒸馏技术,将大规模深度推理模型的知识迁移到小模型中,显著提升了小模型的推理能力。实验结果表明,DistilQwen2.5-R1在数学、代码和科学问题等多个基准测试中表现优异,尤其在7B参数量级上超越了其他开源蒸馏模型。 本文将深入阐述 DistilQwen2.5-R1 的蒸馏算法、性能评估,并且提供在阿里云人工智能平台 PAI 上的使用指南及相关下载教程。
方案介绍|基于百炼生成向量数据并使用阿里云Milvus存储和检索
阿⾥云Milvus是⼀款云上全托管服务,提供⼤规模向量数据的相似性检索服务。100%兼容开源Milvus,在开源版本的基础上增强了可扩展性,具备易⽤性、可⽤性、安全性、低成本与⽣态优势。阿⾥云Milvus可以⽀持⼏乎所有涉及到向量搜索的场景。例如检索增强⽣成RAG,以及经典的搜索推荐、多模态检索等。阿里云Milvus可存储百炼产生的向量数据,并进行大规模向量数据的检索。本文将重点介绍这一过程的方案。
seatunnel配置mysql2hive
本文介绍了SeaTunnel的安装与使用教程,涵盖从安装、配置到数据同步的全过程。主要内容包括: 1. **SeaTunnel安装**:详细描述了下载、解压及配置连接器等步骤。 2. **模拟数据到Hive (fake2hive)**:通过编辑测试脚本,将模拟数据写入Hive表。 3. **MySQL到控制台 (mysql2console)**:创建配置文件并执行命令,将MySQL数据输出到控制台。 4. **MySQL到Hive (mysql2hive)**:创建Hive表,配置并启动同步任务,支持单表和多表同步。
2025 超详细!Lens Kubernetes IDE 多平台下载安装与集群管理教程
Lens 是一款企业级 Kubernetes 可视化操作平台,2025版实现了三大技术革新:AI智能运维(异常检测准确率98.7%)、多云联邦管理(支持50+集群)和实时3D拓扑展示。本文介绍其安装环境、配置流程、核心功能及高阶技巧,帮助用户快速上手并解决常见问题。适用于 Windows、macOS 和 Ubuntu 系统,需满足最低配置要求并前置依赖组件如 kubectl 和 Helm。通过 Global Cluster Hub 实现多集群管理,AI辅助故障诊断提升运维效率,自定义监控看板和插件生态扩展提供更多功能。
海量日志接入 Elasticsearch Serverless 应用降本70%以上
本文将探讨在日志场景下,使用阿里云Elasticsearch Serverless相较于基于ECS自建Elasticsearch集群的成本与性能优势,展示如何通过Serverless架构实现高达 70%以上的成本节约。
Temu商品列表数据接口(Temu API系列)
Temu作为新兴跨境电商平台,为全球卖家和消费者搭建便捷交易桥梁。通过商品列表数据接口,开发者、分析师可获取商品名称、价格、销量等信息,助力市场调研、商品管理和数据分析。接口支持HTTP GET请求,参数包括品类、价格区间、排序方式等,响应格式为JSON。Python示例代码展示了如何调用API获取数据,应用场景涵盖竞争对手分析、选品参考、销售预测及个性化推荐系统开发等。
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
产品经理-B 端与C端
B端与C端是IT互联网产品经理的类型划分,分别面向企业和个人消费者。C端产品如微信、淘宝,注重用户体验和快速迭代;B端产品如CRM系统、ERP软件,强调功能复杂性和定制化服务。此外,还有G端产品,主要服务于政府机构,注重数据安全和合规性。产品经理起源于20世纪20年代末的美国宝洁公司,随着互联网的发展,该角色在IT领域变得愈加重要。
[python 技巧] 快速掌握Streamlit: python快速原型开发工具
本文旨在快速上手python的streamlit库,包括安装,输入数据,绘制图表,基础控件,进度条,免费部署。
重磅发布 | OpenSearch推出向量检索GPU图算法方案并支持GPU规格售卖
OpenSearch向量检索版推出了面向企业开发者的GPU图算法方案(CAGRA算法),支持客户直接购买GPU规格节点,是国内首家支持GPU规格的向量检索产品。
分享一些在 1688 上找一件代发商品的技巧
在1688上找一件代发商品需明确自身需求与定位,筛选可靠供应商,研究商品信息,利用精准搜索和平台推荐,关注活动,并与供应商充分沟通,确保合作顺畅。
通义灵码一周年:灵码编码个人版实践
作为一名运维工程师,我在运维和测试过程中经常需要编写代码。最近了解到通义灵码,它支持行/函数级实时续写、自然语言生成代码等功能,大大提升了我的工作效率。通过通义灵码,我可以快速生成和补全代码,节省了大量时间。此外,通义灵码还提供了代码解释和注释生成等实用功能,帮助我更好地理解和维护现有代码。整体安装和使用都非常简便,推荐给需要提升开发效率的小伙伴们。
API和SDK的区别
API(应用程序编程接口)和SDK(软件开发工具包)的主要区别在于范围、内容、抽象程度及使用方式。API定义了软件组件间的交互规则,范围较窄,更抽象;而SDK提供了一整套开发工具,包括API、编译器、调试器等,范围广泛,具体且实用,有助于提高开发效率。
API和SDK的区别
API 和 SDK 的区别在于:API 是一组定义了软件组件之间交互规范的接口,用于实现不同软件组件之间的通信;而 SDK 是一个全面的工具集合,包含 API、编译器、调试器、文档等,用于特定平台的应用程序开发。SDK 范围更广,内容更丰富,更具体和具象化,适合复杂的开发需求;API 则更加抽象,侧重于功能的定义和调用方式。
Flink CDC:新一代实时数据集成框架
本文源自阿里云实时计算团队 Apache Flink Committer 任庆盛在 Apache Asia CommunityOverCode 2024 的分享,涵盖 Flink CDC 的概念、版本历程、内部实现及社区未来规划。Flink CDC 是一种基于数据库日志的 CDC 技术实现的数据集成框架,能高效完成全量和增量数据的实时同步。自 2020 年以来,Flink CDC 经过多次迭代,已成为功能强大的实时数据集成工具,支持多种数据库和数据湖仓系统。未来将进一步扩展生态并提升稳定性。
Pai-Megatron-Patch:围绕Megatron-Core打造大模型训练加速生态
Pai-Megatron-Patch(https://github.com/alibaba/Pai-Megatron-Patch)是阿里云人工智能平台PAI研发的围绕Nvidia MegatronLM的大模型开发配套工具,旨在帮助开发者快速上手大模型,完成大模型(LLM)相关的高效分布式训练,有监督指令微调,下游任务评估等大模型开发链路。最近一年来,我们持续打磨Pai-Megatron-Patch的性能和扩展功能,围绕Megatron-Core(以下简称MCore)进一步打造大模型训练加速技术生态,推出更多的的训练加速、显存优化特性。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。