使用Databricks+Mlflow进行机器学习模型的训练和部署【Databricks 数据洞察公开课】

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 介绍如何使用Databricks和MLflow搭建机器学习生命周期管理平台,实现从数据准备、模型训练、参数和性能指标追踪、以及模型部署的全流程。

作者:李锦桂   阿里云开源大数据平台开发工程师


ML工作流的痛点

1.png

机器学习工作流中存在诸多痛点:


  • 首先,很难对机器学习的实验进行追踪。机器学习算法中有大量可配置参数,在做机器学习实验时,很难追踪到哪些参数、哪个版本的代码以及哪个版本的数据会产生特定的结果。
  • 其次,机器学习实验的结果难以复现。没有标准的方式来打包环境,即使是相同的代码、相同的参数以及相同的数据,也很难复现实验结果。因为实验结果还取决于采用的代码库。
  • 最后,没有标准的方式管理模型的生命周期。算法团队通常会创建大量模型,而这些模型需要中央平台进行管理,特别是模型的版本所处阶段和注释等元数据信息,以及版本的模型是由哪些代码、哪些数据、哪些参数产生,模型的性能指标如何。也没有统一的方式来部署这些模型。


MIflow 就是为了解决机器学习工作流中的上述痛点问题而生。它可以通过简单的 API 实现实验参数追踪、环境打包、模型管理以及模型部署整个流程。


MIflow的第一个核心功能:MIflow Tracking

2.png

它可以追踪基于学习的实验参数、模型的性能指标以及模型的各种文件。在做机器学习时实验时,通常需要记录一些参数配置以及模型的性能指标,而MIflow可以帮助用户免去手动记录的操作。它不仅能记录参数,还能记录任意文件,包括模型、图片、源码等。


从上图左侧代码可以看到,使用MIflow start_run可以开启一次实验;使用 log_param 可以记录模型的参数配置;使用log_metric 可以记录下模型的性能指标,包括标量的性能指标和向量的性能指标;使用 log_model 可以记录下训练好的模型;使用 log_artifact 可以记录下任何想要记录的文件,比如上图中记录下的就是源码。


MIflow的第二个核心功能:MIflow Project

3.png

它会基于代码规约来打包训练代码,并指定执行环境、执行入口以及参数等信息,以便复现实验结果。而且这种规范的打包方式能够更方便代码的共享以及平台的迁移。


如上图,miflow-training 项目里包含两个很重要的文件,分别是content.yaml MLprojectcontent.yaml 文件中指定了 project 的运行环境,包含它所有依赖的代码库以及这些代码库的版本;MLproject 里指定了运行的环境,此处为conda.yaml,指定了运行的入口,即如何将 project运行起来,入口信息里面包含了相应的运行参数,此处为 alpha l1_ratio 两个参数。


除此之外,MIflow还提供了命令行工具,使得用户能够方便地运行MIflow project 比如打包好project 并将其上传到 git 仓库里了,用户只需要通过mIflow run 指令即可执行project 通过-P 传入 alpha 参数。


MIflow 的第三个核心功能:MIflow Models

4.png

它支持以统一的方式打包记录和部署多种算法框架模型。训练完模型后,可以使用MIflow log_model将模型记录下来,MIflow 会自动将模型进行存储(可存储到本地或 OSS 上),而后即可在 MIflow WebUI上查看模型与代码版本、参数和metric 之间的关系,以及模型的存储路径。


此外,MIflow 提供了 API 用于部署模型。使用mIflow models serve 部署模型后,即可使用rest API 调用模型,得到预测的结果。


MIflow 的第四个核心功能:MIflow Registry

5.png

MIflow 不但能够存储模型,还提供了WebUI 以管理模型。WebUI 界面上展示了模型的版本和所处的阶段,模型的详情页显示了模型的描述、标签以及schema。其中模型的标签可以用于检索和标记模型,模型的schema 用于表示模型输入和输出的格式。此外MIflow还建立了模型以及运行环境、代码和参数之间的关系,即模型的血缘。


MIflow 的四个核心功能很好地解决了机器学习工作流中的痛点,总结起来可以分为三个方面:

  1. MIflow Tracking 解决了机器学习实验难以追踪的问题。
  2. MIflow Project解决了机器学习工作流中没有标准的方式来打包环境导致实验结果难以复现的问题。
  3. MIflow Models Model Registry 解决了没有标准的方式来管理模型生命周期的问题。


Demo演示

接下来介绍如何使用MIflow DDI 搭建机器学习平台以管理机器学习的生命周期。

6.png

在架构图中可以看到,主要的组件有 DDI 集群、OSS ECS DDI 集群负责做一些机器学习的训练,需要启动一台 ECS 来搭建MIflow tracking server 以提供 UI 界面。此外还需要在 ECS 上安装 MySQL 以存储训练参数、性能和标签等元数据。OSS 用于存储训练的数据以及模型源码等。


部署要点请观看演示视频

https://developer.aliyun.com/live/248988



产品技术咨询

https://survey.aliyun.com/apps/zhiliao/VArMPrZOR  

加入技术交流群

image.png

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
21天前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
28天前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
浅谈机器学习,聊聊训练过程,就酱!
本故事讲的是关于机器学习的基本概念和训练过程。通过这个故事,你将对机器学习有一个直观的了解。随后,当你翻阅关于机器学习的书籍时,也许会有不同的感受。如果你有感觉到任督二脉被打通了,那我真是太高兴了。如果没有,我再努努力 ヘ(・_|
39 0
浅谈机器学习,聊聊训练过程,就酱!
|
2月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
3月前
|
存储 人工智能 并行计算
Pai-Megatron-Patch:围绕Megatron-Core打造大模型训练加速生态
Pai-Megatron-Patch(https://github.com/alibaba/Pai-Megatron-Patch)是阿里云人工智能平台PAI研发的围绕Nvidia MegatronLM的大模型开发配套工具,旨在帮助开发者快速上手大模型,完成大模型(LLM)相关的高效分布式训练,有监督指令微调,下游任务评估等大模型开发链路。最近一年来,我们持续打磨Pai-Megatron-Patch的性能和扩展功能,围绕Megatron-Core(以下简称MCore)进一步打造大模型训练加速技术生态,推出更多的的训练加速、显存优化特性。
|
3月前
|
机器学习/深度学习 Python
训练集、测试集与验证集:机器学习模型评估的基石
在机器学习中,数据集通常被划分为训练集、验证集和测试集,以评估模型性能并调整参数。训练集用于拟合模型,验证集用于调整超参数和防止过拟合,测试集则用于评估最终模型性能。本文详细介绍了这三个集合的作用,并通过代码示例展示了如何进行数据集的划分。合理的划分有助于提升模型的泛化能力。
|
2月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
|
4月前
|
机器学习/深度学习 资源调度 分布式计算
阿里PAI-ChatLearn:大规模 Alignment高效训练框架正式开源
PAI-ChatLearn现已全面开源,助力用户快速、高效的Alignment训练体验。借助ChatLearn,用户可全身心投入于模型设计与效果优化,无需分心于底层技术细节。ChatLearn将承担起资源调度、数据传输、参数同步、分布式运行管理以及确保系统高效稳定运作的重任,为用户提供一站式解决方案。
|
4月前
|
机器学习/深度学习 数据采集 人工智能
揭秘大型机器学习模型背后的秘密:如何在技术深度与广度之间找到完美平衡点,探索那些鲜为人知的设计、训练与部署技巧,让你的作品脱颖而出!
【8月更文挑战第21天】大型机器学习模型是人工智能的关键方向,借助不断增强的计算力和海量数据,已实现在学术与产业上的重大突破。本文深入探讨大型模型从设计到部署的全过程,涉及数据预处理、模型架构(如Transformer)、训练技巧及模型压缩技术,旨在面对挑战时提供解决方案,促进AI技术的实用化进程。
81 1
|
4月前
|
机器学习/深度学习 分布式计算 Cloud Native
云原生架构下的高性能计算解决方案:利用分布式计算资源加速机器学习训练
【8月更文第19天】随着大数据和人工智能技术的发展,机器学习模型的训练数据量和复杂度都在迅速增长。传统的单机训练方式已经无法满足日益增长的计算需求。云原生架构为高性能计算提供了新的可能性,通过利用分布式计算资源,可以在短时间内完成大规模数据集的训练任务。本文将探讨如何在云原生环境下搭建高性能计算平台,并展示如何使用 PyTorch 和 TensorFlow 这样的流行框架进行分布式训练。
141 2