【智能优化算法-蝙蝠算法】基于混合粒子群和蝙蝠算法求解单目标优化问题附matlab代码

简介: 【智能优化算法-蝙蝠算法】基于混合粒子群和蝙蝠算法求解单目标优化问题附matlab代码

1 内容介绍

image.gif编辑

image.gif编辑

PSO 能够实现在全局搜索最大功率点,搜索偏差小,但 收敛时间较长,而 BA 也具有全局搜索功能,前期搜索速度 快,但后期搜索时间长,搜索精度低。鉴于这两种算法的特 点,结合两种算法在搜索不同时期的优势,BA 应用于混合算 法前期,提升前期的搜索效果,PSO 应用于算法中后期,提升 算法的搜索精度,并分别对两种算法进行改进。

蝙蝠的速度更新式(4)的第一部分和粒子群的速度更新 式(2)的第一部分均为上代个体速度项,粒子群可以通过惯性 权重 w调节个体惯性对速度的影响,为了平衡混合算法前期 的全局搜索能力和后期的局部搜索能力,在前期蝙蝠算法中 引入中后期 PSO w。蝙蝠的速度更新式(4)的第二部分和 粒子群的速度更新式(2)的第三部分都为群体认知项,蝙蝠是 通过频率而粒子是通过社会学习因子 c2调节群体经验对速度 的影响,两者可以共用参数 c2。为了进一步提升收敛速度,wc2会随着迭代次数而改变,因此改进后蝙蝠算法的速度更 新式为:

image.gif编辑

2 仿真代码

<span style="color:#333333"><span style="background-color:rgba(0, 0, 0, 0.03)"><code></code><code><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span></code><code>%  HRPBV source codes version <span style="color:#0e9ce5">1.0</span>                                   %</code><code><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span></code><code></code><code>clear all </code><code>close all</code><code>clc</code><code></code><code>CostFunction=@(x) MyCost(x); % Modify <span style="color:#ca7d37">or</span> replace Mycost.m according to your cost funciton</code><code></code><code>Max_iter=<span style="color:#0e9ce5">500</span>; % Maximum number of iterations</code><code>n=<span style="color:#0e9ce5">30</span>;         % Number of agents</code><code>d=<span style="color:#0e9ce5">100</span>;</code><code></code><code></code><code>% HRPBV with V-shaped transfer function</code><code>[gBest, gBestScore, ConvergenceCurve]=HRPBV(n, d, Max_iter, CostFunction);</code><code></code><code>plot(ConvergenceCurve,<span style="color:#dd1144">'DisplayName'</span>,<span style="color:#dd1144">'HRPBV'</span>,<span style="color:#dd1144">'Color'</span>, <span style="color:#dd1144">'b'</span>);</code><code>hold on</code><code></code><code></code><code>title([<span style="color:#dd1144">'\fontsize{12}\bf Convergence curve'</span>]);</code><code>xlabel(<span style="color:#dd1144">'\fontsize{12}\bf Iteration'</span>);ylabel(<span style="color:#dd1144">'\fontsize{12}\bf Average Best-so-far'</span>);</code><code>legend(<span style="color:#dd1144">'\fontsize{10}\bf HRPBV'</span>);</code><code>grid on</code><code>axis tight</code><code></code><code>save resuls</code><code></code><code></code></span></span>

image.gif

3 运行结果

image.gif编辑

4 参考文献

[1]陈志敏, 吴盘龙, 薄煜明,等. 基于自控蝙蝠算法智能优化粒子滤波的机动目标跟踪方法[J]. 电子学报, 2018, 46(4):9.

[2]唐海东, 芮钧, 吴正义. 基于混合蝙蝠算法的梯级水电站群优化调度研究[J]. 水电自动化与大坝监测, 2015(6):5.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
21天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
7天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
14天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
23天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
20天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
23小时前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
22天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。

热门文章

最新文章