AI+医疗:使用神经网络进行医学影像识别分析 ⛵

简介: U-Net是一种卷积网络架构,用于快速、精确地分割生物医学图像。本文讲解使用 U-Net 进行肺部影像分割的案例全过程:工具库&环境准备、数据读取、数据切分、TensorFlow IO准备、U-Net 网络构建、评估准则&损失函数、超参数设置&模型编译、回调函数&模型训练、模型加载&新数据预估。【代码与数据集亲测可运行】

💡 作者: 韩信子@ ShowMeAI
📘 计算机视觉实战系列https://www.showmeai.tech/tutorials/46
📘 行业名企应用系列https://www.showmeai.tech/tutorials/63
📘 本文地址https://www.showmeai.tech/article-detail/298
📢 声明:版权所有,转载请联系平台与作者并注明出处
📢 收藏 ShowMeAI查看更多精彩内容

💡 深度学习+医疗科技

近年高速发展的人工智能技术应用到了各个垂直领域,比如把深度学习应用于各种医学诊断,效果显著甚至在某些方面甚至超过了人类专家。典型的 CV 最新技术已经应用于阿尔茨海默病的分类、肺癌检测、视网膜疾病检测等医学成像任务中。

💡 图像分割

图像分割是将图像按照内容物切分为不同组的过程,它定位出了图像中的对象和边界。语义分割是像素级别的识别,我们在很多领域的典型应用,背后的技术支撑都是图像分割算法,比如:医学影像、无人驾驶可行驶区域检测、背景虚化等。

本文涉及到的深度学习基础知识,及计算机视觉详细知识,推荐大家阅读ShowMeAI的教程专栏:

💡 语义分割典型网络 U-Net

U-Net 是一种卷积网络架构,用于快速、精确地分割生物医学图像。

关于语义分割的各类算法原理及优缺点对比(包括U-Net), ShowMeAI 在过往文章 📘 深度学习与CV教程(14) | 图像分割 (FCN,SegNet,U-Net,PSPNet,DeepLab,RefineNet) 中有详细详解。

U-Net 的结构如下图所示:


在 U-Net 中,与其他所有卷积神经网络一样,它由卷积和最大池化等层次组成。

  • U-Net 简单地将编码器的特征图拼接至每个阶段解码器的上采样特征图,从而形成一个梯形结构。该网络非常类似于 Ladder Network 类型的架构。
  • 通过跳跃 拼接 连接的架构,在每个阶段都允许解码器学习在编码器池化中丢失的相关特征。
  • 上采样采用转置卷积。

💡 使用 U-Net 进行肺部影像分割

我们这里使用到的数据集是 🏆 蒙哥马利县 X 射线医学数据集。 该数据集由肺部的各种 X 射线图像以及每个 X 射线的左肺和右肺的分段图像的图像组成。大家也可以直接通过ShowMeAI的百度网盘链接下载此数据集。

🏆 实战数据集下载(百度网盘):公众号『ShowMeAI研究中心』回复『 实战』,或者点击 这里 获取本文 [[10] 使用神经网络进行肺部医学影像识别与分析]( https://www.showmeai.tech/article-detail/298)masked montgomery county x-ray set 肺部医学影像数据集

ShowMeAI官方GitHubhttps://github.com/ShowMeAI-Hub

① 工具库导入&环境设置

首先导入我们本次使用到的工具库。

# 导入工具库
import os
import numpy as np
import cv2
from glob import glob
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import Recall, Precision

② 数据读取

接下来我们完成数据读取部分,这里读取的内容包括图像和蒙版(mask,即和图片同样大小的标签)。我们会调整维度大小,以便可以作为 U-Net 的输入。

# 读取X射线图像
def imageread(path,width=512,height=512):
    x = cv2.imread(path, cv2.IMREAD_COLOR)
    x = cv2.resize(x, (width, height))
    x = x/255.0
    x = x.astype(np.float32)
    return x

# 读取标签蒙版
def maskread(path_l, path_r,width=512,height=512):
    x_l = cv2.imread(path_l, cv2.IMREAD_GRAYSCALE)
    x_r = cv2.imread(path_r, cv2.IMREAD_GRAYSCALE)
    x = x_l + x_r
    x = cv2.resize(x, (width, height))
    x = x/np.max(x)
    x = x > 0.5
    x = x.astype(np.float32)
    x = np.expand_dims(x, axis=-1)
    return x

③ 数据切分

我们要对模型的效果进行有效评估,所以接下来我们进行数据划分,我们把全部数据分为训练集、验证集和测试集。具体代码如下:

"""加载与切分数据"""
def load_data(path, split=0.1):
    images = sorted(glob(os.path.join(path, "CXR_png", "*.png")))
    masks_l = sorted(glob(os.path.join(path, "ManualMask", "leftMask", "*.png")))
    masks_r = sorted(glob(os.path.join(path, "ManualMask", "rightMask", "*.png")))
    split_size = int(len(images) * split) # 9:1的比例切分
    train_x, val_x = train_test_split(images, test_size=split_size, random_state=42)
    train_y_l, val_y_l = train_test_split(masks_l, test_size=split_size, random_state=42)
    train_y_r, val_y_r = train_test_split(masks_r, test_size=split_size, random_state=42)
    train_x, test_x = train_test_split(train_x, test_size=split_size, random_state=42)
    train_y_l, test_y_l = train_test_split(train_y_l, test_size=split_size, random_state=42)
    train_y_r, test_y_r = train_test_split(train_y_r, test_size=split_size, random_state=42)

    return (train_x, train_y_l, train_y_r), (val_x, val_y_l, val_y_r), (test_x, test_y_l, test_y_r)

④ TensorFlow IO准备

我们会使用到 TensorFlow 进行训练和预估,我们用 TensorFlow 读取 numpy array 格式的数据,转为 TensorFlow 的 tensor 形式,并构建方便以 batch 形态读取和训练的 dataset 格式。

# tensor格式转换
def tf_parse(x, y_l, y_r):
    def _parse(x, y_l, y_r):
        x = x.decode()
        y_l = y_l.decode()
        y_r = y_r.decode()
        x = imageread(x)
        y = maskread(y_l, y_r)
        return x, y
    x, y = tf.numpy_function(_parse, [x, y_l, y_r], [tf.float32, tf.float32])
    x.set_shape([512, 512, 3])
    y.set_shape([512, 512, 1])
    return x, y

# 构建tensorflow dataset
def tf_dataset(X, Y_l, Y_r, batch=8):
    dataset = tf.data.Dataset.from_tensor_slices((X, Y_l, Y_r))
    dataset = dataset.shuffle(buffer_size=200)
    dataset = dataset.map(tf_parse)
    dataset = dataset.batch(batch)
    dataset = dataset.prefetch(4)
    return dataset

⑤ U-Net 网络构建

下面我们构建 U-Net 网络。

from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Conv2DTranspose, Concatenate, Input
from tensorflow.keras.models import Model

# 一个卷积块结构
def conv_block(input, num_filters):
    x = Conv2D(num_filters, 3, padding="same")(input)
    x = BatchNormalization()(x)
    x = Activation("relu")(x)

    x = Conv2D(num_filters, 3, padding="same")(x)
    x = BatchNormalization()(x)
    x = Activation("relu")(x)

    return x

# 编码器模块
def encoder_block(input, num_filters):
    x = conv_block(input, num_filters)
    p = MaxPool2D((2, 2))(x)
    return x, p

# 解码器模块
def decoder_block(input, skip_features, num_filters):
    x = Conv2DTranspose(num_filters, (2, 2), strides=2, padding="same")(input)
    x = Concatenate()([x, skip_features])
    x = conv_block(x, num_filters)
    return x

# 完整的U-Net
def build_unet(input_shape):
    inputs = Input(input_shape)
    
    # 编码器部分
    s1, p1 = encoder_block(inputs, 64)
    s2, p2 = encoder_block(p1, 128)
    s3, p3 = encoder_block(p2, 256)
    s4, p4 = encoder_block(p3, 512)

    b1 = conv_block(p4, 1024)
    
    # 解码器部分
    d1 = decoder_block(b1, s4, 512)
    d2 = decoder_block(d1, s3, 256)
    d3 = decoder_block(d2, s2, 128)
    d4 = decoder_block(d3, s1, 64)
    
    # 输出
    outputs = Conv2D(1, 1, padding="same", activation="sigmoid")(d4)

    model = Model(inputs, outputs, name="U-Net")
    return model

⑥ 评估准则与损失函数

我们针对语义分割场景,编写评估准则 IoU 的计算方式,并构建 Dice Loss 损失函数以便在医疗场景语义分割下更针对性地训练学习。

关于IoU、mIoU等评估准则可以查看 ShowMeAI的文章 📘 深度学习与CV教程(14) | 图像分割 (FCN,SegNet,U-Net,PSPNet,DeepLab,RefineNet) 做更多了解。

关于Dice Loss损失函数的解释如下:

📌 Dice 系数

根据 Lee Raymond Dice 命名,是一种集合相似度度量函数,通常用于计算两个样本的相似度(值范围为 $[0, 1]$):

$$ s = \frac{2|X \cap Y|}{|X|+|Y|} $$

$|X \cap Y|$表示 $X$ 和 $Y$ 之间的交集;$|X|$ 和 $|Y|$ 分别表示 $X$ 和 $Y$ 的元素个数。其中,分子中的系数 $2$,是因为分母存在重复计算 $X$ 和 $Y$ 之间的共同元素的原因。

针对,语义分割问题而言,$X$ 为分割图像标准答案 GT,$Y$ 为分割图像预测标签 Pred。

📌 Dice 系数差异函数(Dice loss)

$$ s =1- \frac{2|X \cap Y|}{|X|+|Y|} $$

评估准则与损失函数的代码实现如下:

# IoU计算
def iou(y_true, y_pred):
    def f(y_true, y_pred):
        intersection = (y_true * y_pred).sum()
        union = y_true.sum() + y_pred.sum() - intersection
        x = (intersection + 1e-15) / (union + 1e-15)
        x = x.astype(np.float32)
        return x
    return tf.numpy_function(f, [y_true, y_pred], tf.float32)

# Dice Loss定义
smooth = 1e-15
def dice_coef(y_true, y_pred):
    y_true = tf.keras.layers.Flatten()(y_true)
    y_pred = tf.keras.layers.Flatten()(y_pred)
    intersection = tf.reduce_sum(y_true * y_pred)
    return (2. * intersection + smooth) / (tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) + smooth)

def dice_loss(y_true, y_pred):
    return 1.0 - dice_coef(y_true, y_pred)

⑦ 超参数设置与模型编译

接下来在开始模型训练之前,我们先敲定一些超参数,如下:

  • 批次大型 batch size = 2
  • 学习率 learning rate= 1e-5
  • 迭代轮次 epoch = 30

我们使用 Adam 优化器进行训练,使用的评估指标包括 Dice 系数、IoU、召回率和精度。

# 超参数
batch_size = 2
lr = 1e-5
epochs = 30
model_path = "models/model.h5"

# 读取数据
dataset_path = './NLM-MontgomeryCXRSet/MontgomerySet'
(train_x, train_y_l, train_y_r), (val_x, val_y_l, val_y_r), (test_x, test_y_l, test_y_r) = load_data(dataset_path)

# 训练集与验证集
train_dataset = tf_dataset(train_x, train_y_l, train_y_r, batch=batch_size)
val_dataset = tf_dataset(val_x, val_y_l, val_y_r, batch=batch_size)

# 构建模型
model = build_unet((512, 512, 3))
# 评估准则
metrics = [dice_coef, iou, Recall(), Precision()]
# 编译模型
model.compile(loss=dice_loss, optimizer=Adam(lr), metrics=metrics)

可以使用model.summary查看模型结构信息与参数量:

model . summary()

结果如下图所示(部分内容截图,全部模型信息较长):

⑧ 回调函数&模型训练

我们在回调函数中设置模型存储相关设置,学习率调整策略等,之后在数据集上进行训练。

# 回调函数
callbacks = [
        ModelCheckpoint(model_path, verbose=1, save_best_only=True),
        ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_lr=1e-8, verbose=1)
        ]

# 模型训练
history = model.fit(
        train_dataset,
        epochs=epochs,
        validation_data=val_dataset,
        callbacks=callbacks
    )

训练部分中间信息如下图所示。


在训练模型超过 30 个 epoch 后,保存的模型(验证损失为 0.10216)相关的评估指标结果如下:

  • dice coef:0.9148
  • iou:0.8441
  • recall:0.9865
  • precision:0.9781
  • val_loss:0.1022
  • val_dice_coef: 0.9002
  • val_iou:0.8198
  • val_recall:0.9629
  • val_precision:0.9577

⑨ 模型加载与新数据预估

我们可以把刚才保存好的模型重新加载入内存,并对没有见过的测试数据集进行预估,代码如下:

# 重新载入模型
from tensorflow.keras.utils import CustomObjectScope
with CustomObjectScope({'iou': iou, 'dice_coef': dice_coef, 'dice_loss': dice_loss}):
  model = tf.keras.models.load_model("/content/model.h5")


# 测试集预估
from tqdm import tqdm
import matplotlib.pyplot as plt
ct=0

# 遍历测试集
for x, y_l, y_r in tqdm(zip(test_x, test_y_l, test_y_r), total=len(test_x)):
    """ Extracing the image name. """
    image_name = x.split("/")[-1]

    # 读取测试图片集
    ori_x = cv2.imread(x, cv2.IMREAD_COLOR)
    ori_x = cv2.resize(ori_x, (512, 512))
    x = ori_x/255.0
    x = x.astype(np.float32)
    x = np.expand_dims(x, axis=0)

    # 读取标签信息
    ori_y_l = cv2.imread(y_l, cv2.IMREAD_GRAYSCALE)
    ori_y_r = cv2.imread(y_r, cv2.IMREAD_GRAYSCALE)
    ori_y = ori_y_l + ori_y_r
    ori_y = cv2.resize(ori_y, (512, 512))
    ori_y = np.expand_dims(ori_y, axis=-1)  # (512, 512, 1)
    ori_y = np.concatenate([ori_y, ori_y, ori_y], axis=-1)  # (512, 512, 3)

    # 预估
    y_pred = model.predict(x)[0] > 0.5
    y_pred = y_pred.astype(np.int32)
    #plt.imshow(y_pred)

    # 存储预估结果mask
    save_image_path = "./"+str(ct)+".png"
    ct+=1
    y_pred = np.concatenate([y_pred, y_pred, y_pred], axis=-1)
    sep_line = np.ones((512, 10, 3)) * 255
    cat_image = np.concatenate([ori_x, sep_line, ori_y, sep_line, y_pred*255], axis=1)
    cv2.imwrite(save_image_path, cat_image)

部分结果可视化:

下面为2个测试样本的原始图像、原始掩码(标准答案)和预测掩码的组合图像:

测试用例的输入图像(左侧)、原始掩码标签(中间)、预测掩码(右侧)

参考资料

目录
相关文章
|
14天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
1月前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
248 2
|
1月前
|
机器学习/深度学习 数据采集 人工智能
未来的守护神:AI驱动的网络安全之盾,如何用智慧的光芒驱散网络黑暗势力?揭秘高科技防御系统背后的惊天秘密!
【10月更文挑战第3天】随着网络技术的发展,网络安全问题日益严峻,传统防御手段已显不足。本文探讨了构建AI驱动的自适应网络安全防御系统的必要性及其关键环节:数据采集、行为分析、威胁识别、响应决策和执行。通过Python库(如scapy、scikit-learn和TensorFlow)的应用实例,展示了如何利用AI技术提升网络安全防护水平。这种系统能够实时监控、智能分析并自动化响应,显著提高防护效率与准确性,为数字世界提供更强大的安全保障。
61 2
|
10天前
|
机器学习/深度学习 人工智能 安全
AI与网络安全:防御黑客的新武器
在数字化时代,网络安全面临巨大挑战。本文探讨了人工智能(AI)在网络安全中的应用,包括威胁识别、自动化防御、漏洞发现和预测分析,展示了AI如何提升防御效率和准确性,成为对抗网络威胁的强大工具。
|
15天前
|
存储 安全 网络安全
网络安全法律框架:全球视角下的合规性分析
网络安全法律框架:全球视角下的合规性分析
28 1
|
15天前
|
机器学习/深度学习 人工智能 搜索推荐
AI与体育训练:运动表现分析
【10月更文挑战第31天】本文探讨了AI在体育训练中的应用,特别是在运动表现分析方面。通过数据收集与处理、深度分析与挖掘、实时反馈与调整三个环节,AI为运动员和教练提供了高效、个性化的训练计划和比赛策略,显著提升了训练效率和比赛成绩。未来,AI将在数据隐私、情感理解及跨学科合作等方面继续发展,为体育事业带来更多可能性。
|
1月前
|
人工智能 自然语言处理 算法
几款宝藏级AI阅读工具推荐!论文分析、文档总结必备神器!
【10月更文挑战第8天】几款宝藏级AI阅读工具推荐!论文分析、文档总结必备神器!
87 1
几款宝藏级AI阅读工具推荐!论文分析、文档总结必备神器!
|
22天前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
49 2
|
23天前
|
机器学习/深度学习 人工智能 物联网
5G与AI融合:智能网络的新纪元
【10月更文挑战第25天】
43 3
|
24天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
下一篇
无影云桌面