DL中版本配置问题:TensorFlow、Keras、Python版本完美搭配推荐

简介: DL中版本配置问题:TensorFlow、Keras、Python版本完美搭配推荐

 

目录

TensorFlow、Keras、Python版本完美搭配推荐


 

 

TensorFlow、Keras、Python版本完美搭配推荐

TensorFlow 2.1.0 + Keras 2.3.1 on Python 3.6.

If no --env is provided, it uses the tensorflow-1.9 image by default, which comes with Python 3.6, Keras 2.2.0 and TensorFlow 1.9.0 pre-installed.

Framework Env name (--env parameter) Description Docker Image Packages and Nvidia Settings
TensorFlow 2.1 tensorflow-2.1 TensorFlow 2.1.0 + Keras 2.3.1 on Python 3.6. floydhub/tensorflow TensorFlow-2.1
TensorFlow 2.0 tensorflow-2.0 TensorFlow 2.0.0 + Keras 2.3.1 on Python 3.6. floydhub/tensorflow TensorFlow-2.0
TensorFlow 1.15 tensorflow-1.15 TensorFlow 1.15.0 + Keras 2.3.1 on Python 3.6. floydhub/tensorflow TensorFlow-1.15
TensorFlow 1.14 tensorflow-1.14 TensorFlow 1.14.0 + Keras 2.2.5 on Python 3.6. floydhub/tensorflow TensorFlow-1.14
TensorFlow 1.13 tensorflow-1.13 TensorFlow 1.13.0 + Keras 2.2.4 on Python 3.6. floydhub/tensorflow TensorFlow-1.13
TensorFlow 1.12 tensorflow-1.12 TensorFlow 1.12.0 + Keras 2.2.4 on Python 3.6. floydhub/tensorflow TensorFlow-1.12
  tensorflow-1.12:py2 TensorFlow 1.12.0 + Keras 2.2.4 on Python 2. floydhub/tensorflow  
TensorFlow 1.11 tensorflow-1.11 TensorFlow 1.11.0 + Keras 2.2.4 on Python 3.6. floydhub/tensorflow TensorFlow-1.11
  tensorflow-1.11:py2 TensorFlow 1.11.0 + Keras 2.2.4 on Python 2. floydhub/tensorflow  
TensorFlow 1.10 tensorflow-1.10 TensorFlow 1.10.0 + Keras 2.2.0 on Python 3.6. floydhub/tensorflow TensorFlow-1.10
  tensorflow-1.10:py2 TensorFlow 1.10.0 + Keras 2.2.0 on Python 2. floydhub/tensorflow  
TensorFlow 1.9 tensorflow-1.9 TensorFlow 1.9.0 + Keras 2.2.0 on Python 3.6. floydhub/tensorflow TensorFlow-1.9
  tensorflow-1.9:py2 TensorFlow 1.9.0 + Keras 2.2.0 on Python 2. floydhub/tensorflow  
TensorFlow 1.8 tensorflow-1.8 TensorFlow 1.8.0 + Keras 2.1.6 on Python 3.6. floydhub/tensorflow TensorFlow-1.8
  tensorflow-1.8:py2 TensorFlow 1.8.0 + Keras 2.1.6 on Python 2. floydhub/tensorflow  
TensorFlow 1.7 tensorflow-1.7 TensorFlow 1.7.0 + Keras 2.1.6 on Python 3.6. floydhub/tensorflow TensorFlow-1.7
  tensorflow-1.7:py2 TensorFlow 1.7.0 + Keras 2.1.6 on Python 2. floydhub/tensorflow  
TensorFlow 1.5 tensorflow-1.5 TensorFlow 1.5.0 + Keras 2.1.6 on Python 3.6. floydhub/tensorflow TensorFlow-1.5
  tensorflow-1.5:py2 TensorFlow 1.5.0 + Keras 2.1.6 on Python 2. floydhub/tensorflow  
TensorFlow 1.4 tensorflow-1.4 TensorFlow 1.4.0 + Keras 2.0.8 on Python 3.6. floydhub/tensorflow  
  tensorflow-1.4:py2 TensorFlow 1.4.0 + Keras 2.0.8 on Python 2. floydhub/tensorflow  
TensorFlow 1.3 tensorflow-1.3 TensorFlow 1.3.0 + Keras 2.0.6 on Python 3.6. floydhub/tensorflow  
  tensorflow-1.3:py2 TensorFlow 1.3.0 + Keras 2.0.6 on Python 2. floydhub/tensorflow  
TensorFlow 1.2 tensorflow-1.2 TensorFlow 1.2.0 + Keras 2.0.6 on Python 3.5. floydhub/tensorflow  
  tensorflow-1.2:py2 TensorFlow 1.2.0 + Keras 2.0.6 on Python 2. floydhub/tensorflow  
TensorFlow 1.1 tensorflow TensorFlow 1.1.0 + Keras 2.0.6 on Python 3.5. floydhub/tensorflow  
  tensorflow:py2 TensorFlow 1.1.0 + Keras 2.0.6 on Python 2. floydhub/tensorflow  
TensorFlow 1.0 tensorflow-1.0 TensorFlow 1.0.0 + Keras 2.0.6 on Python 3.5. floydhub/tensorflow  
  tensorflow-1.0:py2 TensorFlow 1.0.0 + Keras 2.0.6 on Python 2. floydhub/tensorflow  
TensorFlow 0.12 tensorflow-0.12 TensorFlow 0.12.1 + Keras 1.2.2 on Python 3.5. floydhub/tensorflow  
  tensorflow-0.12:py2 TensorFlow 0.12.1 + Keras 1.2.2 on Python 2. floydhub/tensorflow  
PyTorch 1.4 pytorch-1.4 PyTorch 1.4.0 + fastai 1.0.60 on Python 3.6. floydhub/pytorch PyTorch-1.4
PyTorch 1.3 pytorch-1.3 PyTorch 1.3.0 + fastai 1.0.60 on Python 3.6. floydhub/pytorch PyTorch-1.3
PyTorch 1.2 pytorch-1.2 PyTorch 1.2.0 + fastai 1.0.60 on Python 3.6. floydhub/pytorch PyTorch-1.2
PyTorch 1.1 pytorch-1.1 PyTorch 1.1.0 + fastai 1.0.57 on Python 3.6. floydhub/pytorch PyTorch-1.1
PyTorch 1.0 pytorch-1.0 PyTorch 1.0.0 + fastai 1.0.51 on Python 3.6. floydhub/pytorch PyTorch-1.0
  pytorch-1.0:py2 PyTorch 1.0.0 on Python 2. floydhub/pytorch  
PyTorch 0.4 pytorch-0.4 PyTorch 0.4.1 on Python 3.6. floydhub/pytorch PyTorch-0.4
  pytorch-0.4:py2 PyTorch 0.4.1 on Python 2. floydhub/pytorch  
PyTorch 0.3 pytorch-0.3 PyTorch 0.3.1 on Python 3.6. floydhub/pytorch PyTorch-0.3
  pytorch-0.3:py2 PyTorch 0.3.1 on Python 2. floydhub/pytorch  
PyTorch 0.2 pytorch-0.2 PyTorch 0.2.0 on Python 3.5 floydhub/pytorch  
  pytorch-0.2:py2 PyTorch 0.2.0 on Python 2. floydhub/pytorch  
PyTorch 0.1 pytorch-0.1 PyTorch 0.1.12 on Python 3. floydhub/pytorch  
  pytorch-0.1:py2 PyTorch 0.1.12 on Python 2. floydhub/pytorch  
Theano 0.9 theano-0.9 Theano rel-0.8.2 + Keras 2.0.3 on Python3.5. floydhub/theano  
  theano-0.9:py2 Theano rel-0.8.2 + Keras 2.0.3 on Python2. floydhub/theano  
Caffe caffe Caffe rc4 on Python3.5. floydhub/caffe  
  caffe:py2 Caffe rc4 on Python2. floydhub/caffe  
Torch torch Torch 7 with Python 3 env. floydhub/torch  
  torch:py2 Torch 7 with Python 2 env. floydhub/torch  
Chainer 1.23 chainer-1.23 Chainer 1.23.0 on Python 3. floydhub/chainer  
  chainer-1.23:py2 Chainer 1.23.0 on Python 2. floydhub/chainer  
Chainer 2.0 chainer-2.0 Chainer 1.23.0 on Python 3. floydhub/chainer  
  chainer-2.0:py2 Chainer 1.23.0 on Python 2. floydhub/chainer  
MxNet 1.0 mxnet MxNet 1.0.0 on Python 3.6. floydhub/mxnet  
  mxnet:py2 MxNet 1.0.0 on Python 2. floydhub/mxnet  

 

所有环境都可用于CPU和GPU执行。例如,

$ floyd run --env tensorflow:py2 "python mnist_cnn.py"

在CPU上运行Python2 Tensorflow任务

$ floyd run --env tensorflow:py2 --gpu "python mnist_cnn.py"

以下软件包(除了许多其他通用库之外)可在所有环境中使用:

h5py, iPython, Jupyter, matplotlib, numpy, OpenCV, Pandas, Pillow, scikit-learn, scipy, sklearn

参考文章https://docs.floydhub.com/guides/environments/

 


相关文章
|
1月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
248 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
82 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
16 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
16 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
8天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
27 3
|
20天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
1月前
|
Python Windows
查看Python版本
【10月更文挑战第8天】查看Python版本
23 2
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
53 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
IDE 网络安全 开发工具
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
本文介绍了如何在PyCharm专业版中连接远程服务器并配置远程Python环境解释器,以便在服务器上运行代码。
284 0
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。