【数据对比】综合分析百度情感分析以及华为情感分析的差异,我有了如下结果

简介: 【数据对比】综合分析百度情感分析以及华为情感分析的差异,我有了如下结果

前言


某一天,经理找到我,说BOSS需要情感分析对比的结果,我这边能不能研究一下几家情感分析的平台,按照(巴拉巴拉)的要求进行分析,于是就有了这篇文章......


为什么要进行对比


  1. 公司任务
  2. 了解下情感分析
  3. 对比几家情感分析


业务场景:


用提供的截取微博网上留言信息,调用华为云的情感分析,百度云情感分析(通用接口),百度云情感分析(定制化模型,自定义学习资料)。根据以下几个点进行对比。

  • 未处理的原版数据
  • 通用模型-       原版分类置信度
  • 定制模型 -  原版分类置信度     (800条学习资料样本,     85.96%准确率的学习资料)
  • 定制模型 -  原版分类置信度     (1800条学习资料样本,     65.93%准确率的学习资料)
  • 原版评论分类置信度     (华为云 仅2000条左右数据)
  • 通用模型-       原版评论负面倾向概率
  • 定制模型  - 原版评论负面倾向概率     (800条学习资料样本,     85.96%准确率的学习资料)
  • 定制模型  - 原版评论负面倾向概率     (1800条学习资料样本,     65.93%准确率的学习资料)
  • 通用模型-       原版评论正面倾向概率
  • 使用定制模型  -      原版评论正面倾向概率     (800条学习资料样本,     85.96%准确率的学习资料)
  • 使用定制模型  -      原版评论正面倾向概率     (1800条学习资料样本,     65.93%准确率的学习资料)
  • 通用模型-  原     版评论分析正负结果值
  • 定制模型 -       原版评论分析正负结果值      (800条学习资料样本,     85.96%准确率的学习资料)
  • 定制模型 -       原版评论分析正负结果值      (1800条学习资料样本,     65.93%准确率的学习资料)
  • 原版评论正负结果值     (华为云 仅2000条左右数据)
  • 处理掉@和#后的评论数据:
  • 通用模型-       原版分类置信度
  • 定制模型 -  原版分类置信度     (800条学习资料样本,     85.96%准确率的学习资料)
  • 定制模型 -  原版分类置信度     (1800条学习资料样本,     65.93%准确率的学习资料)
  • 原版评论分类置信度     (华为云 仅2000条左右数据)
  • 通用模型-       原版评论负面倾向概率
  • 定制模型  - 原版评论负面倾向概率     (800条学习资料样本,     85.96%准确率的学习资料)
  • 定制模型  - 原版评论负面倾向概率     (1800条学习资料样本,     65.93%准确率的学习资料)
  • 通用模型-       原版评论正面倾向概率
  • 使用定制模型  -      原版评论正面倾向概率     (800条学习资料样本,     85.96%准确率的学习资料)
  • 使用定制模型  -      原版评论正面倾向概率     (1800条学习资料样本,     65.93%准确率的学习资料)
  • 通用模型-  原     版评论分析正负结果值
  • 定制模型 -       原版评论分析正负结果值      (800条学习资料样本,     85.96%准确率的学习资料)
  • 定制模型 -       原版评论分析正负结果值      (1800条学习资料样本,     65.93%准确率的学习资料)
  • 原版评论正负结果值     (华为云 仅2000条左右数据)


解决的问题:


  1. 对比了两家的情感分析之后,经过综合分析,百度云情感分析(通用模型)的准确率是最高的。
  2. 目前综合来看,百度云的情感分析通用模式是自然语言分析的最好选择。
  3. 定制化的百度模型实际测试不如通用模型准确(可能为学习模型数据不够准确)。


挑战:


  1. 首次使用华为云情感分析,对于接口调用方面自己阅读文档不够详细,走了较多的弯路,不过经过仔细研究自行解决。
  2. 由于存在QPS限制,调用的时候需要限制调用频率。
  3. 由于网络原因可能存在频繁调用的情况。
  4. 数据较多的情况下处理数据的时长比较久(针对试用而言)。
  5. 根据不同的定制化模型。
  6. 可能存在无法分析的特殊字符数据。


使用服务:


自然语言处理 - 情感分析


如何解决:


1. 在不超过**qps**限制的情况下,试用分页形式,分段请求,在数据库中设置 判断值判断数据是否进行分析,如果重复调用会直接过滤掉已经进行情感分析的数据。
   2. 对于线程进行`休眠`操作,防止调用请求过于频繁接口调用失败。
   3. 使用日志记录失败请求信息,失败请求原因,失败请求数据。
   4. 多次调用数据确保大部分数据可以产生结果,个别数据请求失败以及没有数据的忽略。
复制代码


使用场景:


  1. 比对市面上几家华为云的情感分析使用,根据分析结果数据进行比对。
  2. 对比百度云通用模型和定制化模型的使用。
  3. 对比不同的环境下分析的数据,数据差异值。


方案截图:


网络异常,图片无法展示
|


(处理掉特殊字符前的截图)


网络异常,图片无法展示
|


(处理掉特殊字符后的截图)


使用规模:


共1000条数据左右。(其实总共有18000条数据)


使用收益:


  1. 单单从纸面数据来看,可能百度的稍好一些
  2. 最后BOSS让我用的百度云的情感分析
  3. 很好奇情感分析的原理


结语


原数据报表有 18000条,如果有对情感分析感兴趣,或者想要了解情感分析对比结果的,可以留言邮箱,我会抽空把报表数据发送至您的邮箱

如果觉得对您有帮助欢迎扩散

相关文章
|
分布式计算 API Linux
通义千问API:找出两篇文章的不同
本章我们将介绍如何利用大模型开发一个文档比对小工具,我们将用这个工具来给互联网上两篇内容相近但版本不同的文档找找茬,并且我们提供了一种批处理文档比对的方案
|
存储 人工智能 前端开发
视野修炼-技术周刊第61期
🔥强烈推荐 1. 2023年🧑‍💻工程师的 Mac 工具箱 Arc - 浏览器, Warp - 终端, Raycast - 启动器,Orbstack - 容器,Setapp - 软件订阅,CleanShotX - 截屏,OBS - 录屏推流,Gifox - Gif图制作, 1Password - 密码管理器,Bartender - 菜单栏管理,Downie - 视频下载,IINA / Infuse - 视频播放器,iRightMouse - 鼠标右键增强,PopClip / Bob - 鼠标工具 Arc 和 Warp 目前笔者一直在用,其它的看着也还不错,按使用场景可以试试 作者:粥里
|
前端开发 Java 数据库连接
基于Spring boot轻松实现一个多数据源框架
基于Spring boot轻松实现一个多数据源框架
597 0
|
11月前
|
机器学习/深度学习 存储 人工智能
《DeepSeek情感分析技术:突破与创新,精准判断情感倾向》
在数字化时代,文本数据激增,情感分析成为关键需求。DeepSeek作为AI领域的佼佼者,基于Transformer架构实现深度语义理解,通过多模态融合技术全面感知情感,结合领域自适应与迁移学习跨越不同场景,采用对抗训练提升鲁棒性,并融合情感词典与知识图谱增强理解。这些创新使DeepSeek能精准判断情感倾向,为企业和研究提供有力支持。
1380 20
|
网络协议 网络安全 网络虚拟化
|
11月前
|
人工智能 自然语言处理 Linux
OSUM:告别ASR单一功能,西工大开源的语音大模型会「读心」!识别+情感分析+年龄预测等8大任务1个模型全搞定
OSUM 是西北工业大学开发的开源语音理解模型,支持语音识别、情感分析、说话者性别分类等多种任务,基于 ASR+X 训练策略,具有高效和泛化能力强的特点。
1233 8
OSUM:告别ASR单一功能,西工大开源的语音大模型会「读心」!识别+情感分析+年龄预测等8大任务1个模型全搞定
|
6月前
|
算法 安全 网络安全
https 的加密过程
HTTPS通过SSL/TLS协议实现安全通信,结合非对称加密与对称加密技术。客户端与服务器协商加密套件,验证证书后生成主密钥用于后续数据加密传输,确保身份真实、数据保密与完整。
2019 1
|
11月前
|
机器学习/深度学习 人工智能 程序员
阿里云出手DeepSeek拒绝服务器繁忙,程序员直呼:真香!
阿里云PAI平台支持一键部署DeepSeek-V3和DeepSeek-R1大模型,用户无需编写代码即可完成从训练到部署的全过程。通过PAI Model Gallery,开发者可轻松选择并部署所需模型版本,享受高效、便捷的AI开发体验。教程详细介绍了开通PAI、选择模型及一键部署的具体步骤,帮助用户快速上手。
|
JavaScript 前端开发 调度
async/await和Generators的底层实现原理有什么不同?
总体而言,async/await 和 Generators 虽然都用于处理异步操作,但它们的底层实现原理有着不同的侧重点和方式。理解这些差异有助于我们更好地运用它们,并在不同的场景中选择合适的方式来处理异步编程。
258 63
|
Docker 容器
marco-o1 + ollama + Open-WebUI 实现 o1 的折叠推理效果
marco-o1 + ollama + Open-WebUI 实现 o1 的折叠推理效果
1373 2