基于Python的微博热点李佳琦忒网友话题的评论采集和情感分析的方法,利用情感分析技术对评论进行情感倾向性判断

简介: 本文介绍了一种基于Python的方法,用于采集微博热点话题下的评论数据,并运用情感分析技术对这些评论进行情感倾向性判断,进而通过统计分析和可视化技术展示网友对特定话题的情感态度,对品牌或个人形象管理、用户需求发现、舆情监测和危机管理等方面具有重要价值。
1 引言

1.1 背景

介绍了基于Python的微博热点李佳琦忒网友话题的评论采集和情感分析的方法。首先,使用Python编写程序实现微博评论的采集,通过API或爬虫方式获取相关话题下的评论数据。然后,对采集到的评论数据进行预处理,包括分词、去除停用词等操作,以准备进行情感分析。

接下来,利用情感分析技术对评论进行情感倾向性判断。可以使用自然语言处理库(如cnsenti)进行情感分析。情感分析的结果可以将评论划分为积极、消极或中立的类别,或者给出情感得分。这样可以更好地了解网友对于李佳琦的看法和态度。

最后,根据情感分析的结果,可以进一步进行统计分析和可视化呈现。可以统计不同情感类别的评论数量,并生成折线图等可视化图表,以直观展示网友对李佳琦的情感态度。

通过以上方法,可以系统地收集和分析微博热点李佳琦的话题下的评论,并从情感的角度了解网友的观点和情感倾向。这对于了解公众的反馈和情感态度,以及品牌或个人形象的管理都具有重要的参考价值。

1.2 意义

基于Python的微博热点李佳琦忒网友话题的评论采集和情感分析具有重要意义。首先,这种方法可以帮助了解公众对李佳琦的态度和看法,包括积极、消极或中立的情感倾向。这对于品牌或个人形象管理非常重要,可以及时了解公众的反馈和情感态度,为决策提供参考。

其次,通过评论的采集和情感分析,可以发现用户需求和关注点,从而改进产品或服务。根据分析结果,可以识别出用户的喜好、痛点和期望,为品牌或个人提供改进和创新的方向。

此外,微博热点评论采集和情感分析还可以用于舆情监测和危机管理。通过实时收集和分析评论,可以快速掌握公众对于李佳琦事件的态度和情感动向,及时回应和应对负面信息,避免危机的进一步扩大。

最后,基于Python的评论采集和情感分析技术具备高效、灵活和可定制的优势。使用Python编程语言,可以自动化地收集和处理大量评论数据,并利用现有的自然语言处理库和深度学习模型进行情感分析。这为研究者、营销人员和舆情分析师提供了强大的工具,帮助他们更好地理解公众意见,并作出相应的决策和行动。

1.3 相关技术

  1. Python爬虫技术:requests、Beatifuisoup、re、json
  2. 数据分析技术:pandas
  3. 情感分析技术:cnsenti
  4. 可视化技术:pyecharts
2 实现

2.1 环境搭建

  1. 安装Python 3.7编译器
  2. 安装pycharm代码编辑器
  3. 使用cmd命令安装所需要的库,安装命令为:pip install -i Simple Index +库名,所需要的库包括:requests/lxml/bs4/pandas/pyecharts/cnsenti,安装好库之后,需要降低urllib3的库版本为1.26.15,使用pip安装即可。
  4. 打开pycharm,创建一个项目,命名为data
  5. 点greate即可

2.2 爬虫实现

首先打开微博,定位所需要爬取的内容。搜索话题‘李佳琦带货怼网友’

由下图可知,我们需要爬的数据包括图中框中地方:

通过右键--审查元素,可以定位到博文的内容信息和网页地址

可以使用Beatifulsoup库解析网页数据,定位爬取对应的博文内容。

具体代码为:

其中需要添加headers和cookies,以及设置ip代理,防止网站反爬:

其中cookie和headers可以在浏览器中的网络---xhr---选择一个链接---标头中找到,按F12即可打开查看,如下图:

博文采集即可完成。

采集完博文,需要对每一条博文的评论进行采集,需要定位找到每一条博文的评论内容,具体步骤如下:

1、点击某一条博文评论展开,点击查看更多评论,如下图

注意下图网址中两个框的位置,一个是发布的博文的用户id一个是这个用户的微博编码,这两个是后面构造爬取评论内容的关键。

找到这个网址,即可发现这个网址存放完整的博文内容信息,包括博文内容、发布时间、地址、用户名等信息,详细可以点击预览查看。

2、每一条博文评论采集,点开所有评论。

其中max_id: 143543321057511是最新页码,uid: 3979870522是用户ID,只有有这两样东西就能采集所有评论。

采集评论通过字典键值对获取。

致此,爬取某个话题下所有博文及评论的实现就此完成,最后将数据存储为csv,存储代码为:

采集结果为:

2.3 数据处理实现及情感分析实现

致采集好评论和博文数据,我们要对博文和评论进行整合,将他们中一些话题标志清洗掉,最后融合成一张表。首先对DataFrame中的'微博全文'、'评论内容'列进行了正则表达式替换操作,去除了字符串中的'#.*?#'部分。然后,通过重命名列名的方式,将'发帖人昵称'改为'昵称','微博全文'改为'内容','发文时间'改为'时间',并生成了一个新的DataFrame df1。

同样地,对data DataFrame中的'评论者昵称'、'评论内容'、'评论创建时间'列进行了正则表达式替换和列名重命名操作,生成了一个新的DataFrame data1。

最后,将df1和data1两个DataFrame按行合并,得到一个新的DataFrame li。接着,将li和da1按行合并,得到最终的DataFrame li1,并打印出来。具体代码为:

最后处理后运行结果为下图,得到5155条数据,3列的数据集:

接下来就是对这数据集,也就是所有评论和博文进行情感分析。导入了cnsenti库中的Sentiment类。然后,通过senti = Sentiment()实例化一个情感分析器。

接下来,将DataFrame li1 转换为列表形式,并遍历每条评论。在循环中,使用senti.sentiment_count(text[1])对评论进行情感分析,得到结果 result。然后,根据积极词和消极词的数量判断情感倾向,如果积极词数减去2大于消极词数,则判定为积极情感;如果积极词数减去2小于消极词数,则判定为消极情感;否则判定为中性情感。

将判断结果添加到text列表中,并将情感标签存储在list0列表中。最后,将list0赋值给li1['情感分析']列,并打印出最终的DataFrame li1。

具体代码为:

运行结果为,其中words为分词数量,sentences为句子数量,pos为积极词数量,neg为消极词数量:

完成情感分析后,接下来就是可视化,需要筛选日期进行分析,查看不同时间下的情感变化趋势。

首先使用pd.to_datetime()将DataFrame li1中的时间列转换为日期时间类型。

然后,筛选出9月10日至9月14日之间的数据,通过设置起始日期和结束日期,并利用条件筛选生成新的DataFrame filtered_df。接着,打印出筛选后的结果。

接下来,对于特定日期进行筛选。使用pd.Timestamp()指定目标日期,例如9月24日和10月24日,并通过比较日期部分筛选出相应日期的数据,生成新的DataFrame filtered_df1和filtered_df2。打印出筛选后的结果。

最后,对filtered_df进行处理,将时间列转换为字符串类型并截取日期部分。然后,按情感分析和时间进行分组计数,并通过.reset_index()重置索引,得到聚合后的DataFrame filtered_df3。打印出最终的结果。

运行结果为:

10月24日情感分析结果:

9月24日情感分析结果:

9月10日到9月14日情感分析结果

最后,使用pyecharts库中的Line类创建了一个折线图,并设置了x轴和y轴的数据。

在折线图中,通过.add_xaxis()方法设置x轴数据为筛选后的中性情感评论的时间列表。然后,使用.add_yaxis()方法分别添加中性、消极和积极情感评论的数量数据,并设置平滑曲线、线条样式和颜色。

接下来,通过.set_global_opts()方法设置全局配置,包括标题、x轴和y轴的名称。

最后,使用.render()方法将折线图渲染为HTML文件,并保存为"line_chart.html"。

运行结果为:

主要代码如下:

相关文章
|
13天前
|
Python
探索Python中的魔法方法:打造你自己的自定义对象
【8月更文挑战第29天】在Python的世界里,魔法方法如同神秘的咒语,它们赋予了对象超常的能力。本文将带你一探究竟,学习如何通过魔法方法来定制你的对象行为,让你的代码更具魔力。
35 5
|
13天前
|
Python
python保存两位小数的几种方法,python2保留小数
python保存两位小数的几种方法,python2保留小数
50 2
|
11天前
|
机器学习/深度学习 算法 数据挖掘
6种有效的时间序列数据特征工程技术(使用Python)
在本文中,我们将探讨使用日期时间列提取有用信息的各种特征工程技术。
45 0
|
2天前
|
数据采集 机器学习/深度学习 搜索推荐
Python爬虫技术基础与应用场景详解
本文介绍了爬虫技术的基本概念、原理及应用场景,包括数据收集、价格监测、竞品分析和搜索引擎优化等。通过一个实战案例展示了如何使用Python爬取电商网站的商品信息。强调了在使用爬虫技术时需遵守法律法规和道德规范,确保数据抓取的合法性和合规性。
|
2天前
|
Python
Python中几种lambda排序方法
【9月更文挑战第7天】在Python中,`lambda`表达式常用于配合排序函数,实现灵活的数据排序。对于基本列表,可以直接使用`sorted()`进行升序或降序排序;处理复杂对象如字典列表时,通过`lambda`指定键值进行排序;同样地,`lambda`也适用于根据元组的不同位置元素来进行排序。
|
4天前
|
存储 安全 算法
显微镜下的安全战!Python加密解密技术,透视数字世界的每一个安全细节
【9月更文挑战第7天】在数字世界中,数据安全至关重要。Python加密解密技术如同显微镜下的精密工具,确保信息的私密性和完整性。以大型医疗机构为例,通过AES和RSA算法的结合,既能高效加密大量医疗数据,又能安全传输密钥,防止数据泄露。以下是使用Python的`pycryptodome`库实现AES加密和RSA密钥交换的简化示例。此方案不仅提高了数据安全性,还为数字世界的每个细节提供了坚实保障,引领我们迈向更安全的未来。
10 1
|
11天前
|
测试技术 开发者 Python
Bottle技术:如何用Python打造小巧而强大的Web应用,让你一鸣惊人?
【8月更文挑战第31天】本文介绍了Bottle——一种轻量级Web框架,以其简洁的语法和强大功能受到开发者喜爱。文章涵盖Bottle的核心概念(路由、模板、请求对象),并展示了其简单易用的特性及快速开发能力。通过遵循最佳实践,开发者能够高效地利用Bottle创建高质量Web应用,迎接未来Web开发的挑战。
12 1
|
11天前
|
测试技术 Python
Bottle技术:如何用Python打造小巧而强大的Web开发利器?
【8月更文挑战第31天】Bottle是一个用Python编写的轻量级Web框架,设计简洁、快速且小巧,适用于快速开发Web应用程序。其主要特点包括简单易学、快速开发、小巧轻量及强大的功能,如路由、模板和表单验证等。Bottle的核心概念包括路由、模板和请求对象,可通过示例了解其基本用法。此外,合理使用路由、编写测试和利用Bottle扩展等最佳实践有助于更高效地进行Web开发。随着Bottle生态的不断发展,它将在未来Web开发中扮演更重要的角色。
19 1
|
14天前
|
数据安全/隐私保护 Python Windows
三种方法,Python轻松提取PDF中全部图片
三种方法,Python轻松提取PDF中全部图片
|
13天前
|
Python
下一篇
DDNS