【协程】ViewModelScope源码解析

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 【协程】ViewModelScope源码解析

前言

使用协程,相信很多同学已经信手拈来了,但是关于ViewModelScope,可能很多同学在用,但却不知道原理,今天来一探究竟。


ViewModelScope,顾名思义,在ViewModel中使用的协程。

它是ViewModel的扩展属性。


推荐理由:


自动取消,不会造成内存泄漏,如果是CoroutineScope,就需要在onCleared()方法中手动取消了,否则可能会造成内存泄漏。

配合ViewModel,能减少样板代码,提高效率。

后面会重点介绍ViewModelScope是怎么做到不会内存泄漏的。


使用

引入

协程:

implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.5.0'
implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-android:1.5.0'

viewmodel-ktx:

implementation("androidx.lifecycle:lifecycle-viewmodel-ktx:2.3.1")

ViewModelScope虽然是协程,但属于androidx.lifecycle包中ViewModel的扩展属性。


示例:

class MyViewModel :ViewModel() {
    fun getData(){
        viewModelScope.launch {
            // do
        }
    }
}

使用非常简单,关键在于它是怎么保证不会内存泄露的?


源码分析

来看viewModelScope源码:


public val ViewModel.viewModelScope: CoroutineScope
    get() {
        val scope: CoroutineScope? = this.getTag(JOB_KEY)
        if (scope != null) {
            return scope
        }
        return setTagIfAbsent(
            JOB_KEY,
            CloseableCoroutineScope(SupervisorJob() + Dispatchers.Main.immediate)
        )
    }
internal class CloseableCoroutineScope(context: CoroutineContext) : Closeable, CoroutineScope {
    override val coroutineContext: CoroutineContext = context
    override fun close() {
        coroutineContext.cancel()
    }
}

先看get()方法:


get() {
    val scope: CoroutineScope? = this.getTag(JOB_KEY)
    if (scope != null) {
        return scope
    }
    return setTagIfAbsent(
        JOB_KEY,
        CloseableCoroutineScope(SupervisorJob() +
Dispatchers.Main.immediate)
    )
}

return中通过setTagIfAbsent创建了协程,并且指定主线程。


先忽略setTagIfAbsent,来看协程创建的方式:


internal class CloseableCoroutineScope(context: CoroutineContext) : Closeable, CoroutineScope {
    override val coroutineContext: CoroutineContext = context
    override fun close() {
        coroutineContext.cancel()
    }
}

CloseableCoroutineScope,顾名思义,可以关闭的协程。


实现Closeable接口,并重写唯一方法close(),并在方法中取消了协程。


现在我们已经知道了viewModelScope是可以取消的了,关键就在于取消时机的控制了。


回过头在再看setTagIfAbsent,setTagIfAbsent是ViewModel中的方法


public abstract class ViewModel { 
    @Nullable
    private final Map<String, Object> mBagOfTags = new HashMap<>();
    private volatile boolean mCleared = false;
    @SuppressWarnings("WeakerAccess")
    protected void onCleared() {
    }
    @MainThread
    final void clear() {
        mCleared = true; 
        if (mBagOfTags != null) {
            synchronized (mBagOfTags) {
                for (Object value : mBagOfTags.values()) {
                    closeWithRuntimeException(value);
                }
            }
        }
        onCleared();
    }
    @SuppressWarnings("unchecked")
    <T> T setTagIfAbsent(String key, T newValue) {
        T previous;
        synchronized (mBagOfTags) {
            previous = (T) mBagOfTags.get(key);
            if (previous == null) {
                mBagOfTags.put(key, newValue);
            }
        }
        T result = previous == null ? newValue : previous;
        if (mCleared) { 
            closeWithRuntimeException(result);
        }
        return result;
    }
    @SuppressWarnings({"TypeParameterUnusedInFormals", "unchecked"})
    <T> T getTag(String key) {
        if (mBagOfTags == null) {
            return null;
        }
        synchronized (mBagOfTags) {
            return (T) mBagOfTags.get(key);
        }
    }
    private static void closeWithRuntimeException(Object obj) {
        if (obj instanceof Closeable) {
            try {
                ((Closeable) obj).close();
            } catch (IOException e) {
                throw new RuntimeException(e);
            }
        }
    }
}

在setTagIfAbsent中,以HashMap的形式把协程对象保存起来了,并配有getTag方法。


可能有同学已经注意到最后的方法closeWithRuntimeException,因为这个方法中调用了Closeable接口的close()方法,而close()方法就是用来取消协程的。


而closeWithRuntimeException方法是谁调用的呢,主要是ViewModel中的clear()方法。


 

@MainThread
    final void clear() {
        mCleared = true;
        if (mBagOfTags != null) {
            synchronized (mBagOfTags) {
                for (Object value : mBagOfTags.values()) {
                    closeWithRuntimeException(value);
                }
            }
        }
        onCleared();
    }

这里是循环保存协程的HashMap,然后调用closeWithRuntimeException取消协程。


那这个ViewModel中的clear()方法又是谁调用的呢?


查看源码,只有一处调用,就是在ViewModelStore中


public class ViewModelStore {
    private final HashMap<String, ViewModel> mMap = new HashMap<>();
    final void put(String key, ViewModel viewModel) {
        ViewModel oldViewModel = mMap.put(key, viewModel);
        if (oldViewModel != null) {
            oldViewModel.onCleared();
        }
    }
    final ViewModel get(String key) {
        return mMap.get(key);
    }
    Set<String> keys() {
        return new HashSet<>(mMap.keySet());
    }
    public final void clear() {
        for (ViewModel vm : mMap.values()) {
            vm.clear();
        }
        mMap.clear();
    }
}

ViewModelStore的源码比较少,也很简单。


同样也是以HashMap的形式来保存ViewModel。


那是什么时候保存的呢,我们来追踪一下put方法:


public class ViewModelProvider {
    //...
    @SuppressWarnings("unchecked")
    @NonNull
    @MainThread
    public <T extends ViewModel> T get(@NonNull String key, @NonNull Class<T> modelClass) {
        //...
        mViewModelStore.put(key, viewModel);
        return (T) viewModel;
    }
    //...
}

在ViewModelProvider的get方法中调用了put,也就是说,我们在创建ViewModel的时候并把其保存了起来。


回过头来再看ViewModelStore,同样也有一个clear()方法,同样循环调用vm.clear()。


继续追踪ViewModelStore的clear()方法是在哪调用的。


是在ComponentActivity.java中调用的:


getLifecycle().addObserver(new LifecycleEventObserver() {
    @Override
    public void onStateChanged(@NonNull LifecycleOwner source,
            @NonNull Lifecycle.Event event) {
        if (event == Lifecycle.Event.ON_DESTROY) {
            if (!isChangingConfigurations()) {
                getViewModelStore().clear();
            }
        }
    }
});

先是获取Lifecycle,并添加生命周期监听。


在生命周期为onDestroy的时候,获取ViewModelStore,并调用其clear()方法。


至此,相信大部分同学都明白了ViewModelScope为什么不会造成内存泄露了,因为在onDestroy的时候会取消执行,只不过这部分工作源码已经替我们完成了。


关于怎么获取到当前生命周期状态的,就涉及到Lifecycle相关的知识了,简而言之,不管是Activity还是Fragment,都是LifecycleOwner,其实是父类实现的,比如ComponentActivity。

在父类中通过ReportFragment或ActivityLifecycleCallbacks接口来派发当前生命周期状态,具体使用哪种派发方式要看Api等级是否在29(10.0)及以上,及 则后者。


author:yechaoa


总结

最后,我们再来总结一下ViewModelScope的整个流程。


首先在创建ViewModel的时候,会通过ViewModelStore以HashMap的形式把ViewModel保存起来;

随后我们在调用viewModelScope的时候,会在ViewModel中以HashMap的形式把协程也保存起来,而这个协程实现了Closeable接口,并在Closeable接口的close()方法中取消协程;

在ViewModel中有个clear()方法,会循环调用close()方法取消协程;

在ViewModelStore中也有个clear()方法,会循环调用ViewModel中的clear()方法;

而ViewModelStore中的clear()方法,是由Lifecycle在生命周期执行到onDestroy的时候调用的。

为避免有的同学没理解,我们再反推梳理一次


在生命周期执行到onDestroy的时候,调用ViewModelStore中的clear()方法;

在ViewModelStore中的clear()方法中,循环调用ViewModel的clear()方法;

在ViewModel的clear()方法中,循环调用close()取消协程。

ok,以上就是ViewModelScope的使用,以及源码分析。


最后

写作不易,如果对你有一丢丢帮助或启发,感谢点赞支持 ^ - ^

目录
相关文章
|
8天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
31 2
|
9天前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
21天前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
39 3
|
1月前
|
存储
让星星⭐月亮告诉你,HashMap的put方法源码解析及其中两种会触发扩容的场景(足够详尽,有问题欢迎指正~)
`HashMap`的`put`方法通过调用`putVal`实现,主要涉及两个场景下的扩容操作:1. 初始化时,链表数组的初始容量设为16,阈值设为12;2. 当存储的元素个数超过阈值时,链表数组的容量和阈值均翻倍。`putVal`方法处理键值对的插入,包括链表和红黑树的转换,确保高效的数据存取。
56 5
|
1月前
|
Java Spring
Spring底层架构源码解析(三)
Spring底层架构源码解析(三)
113 5
|
1月前
|
XML Java 数据格式
Spring底层架构源码解析(二)
Spring底层架构源码解析(二)
|
1月前
|
算法 Java 程序员
Map - TreeSet & TreeMap 源码解析
Map - TreeSet & TreeMap 源码解析
34 0
|
5月前
|
Go Python
使用python实现一个用户态协程
【6月更文挑战第28天】本文探讨了如何在Python中实现类似Golang中协程(goroutines)和通道(channels)的概念。文章最后提到了`wait_for`函数在处理超时和取消操作中的作
51 1
使用python实现一个用户态协程
|
2月前
|
调度 Python
python3 协程实战(python3经典编程案例)
该文章通过多个实战案例介绍了如何在Python3中使用协程来提高I/O密集型应用的性能,利用asyncio库以及async/await语法来编写高效的异步代码。
22 0
|
4月前
|
数据库 开发者 Python
实战指南:用Python协程与异步函数优化高性能Web应用
【7月更文挑战第15天】Python的协程与异步函数优化Web性能,通过非阻塞I/O提升并发处理能力。使用aiohttp库构建异步服务器,示例代码展示如何处理GET请求。异步处理减少资源消耗,提高响应速度和吞吐量,适用于高并发场景。掌握这项技术对提升Web应用性能至关重要。
83 10

热门文章

最新文章

推荐镜像

更多