IDEA 中使用 Big Data Tools 连接大数据组件

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 简介Big Data Tools 插件可用于 Intellij Idea 2019.2 及以后的版本。它提供了使用 Zeppelin,AWS S3,Spark,Google Cloud Storage,Minio,Linode,数字开放空间,Microsoft Azure 和 Hadoop 分布式文件系统(HDFS)来监视和处理数据的特定功能。下面来看一下 Big Data Tools 的安装和使用,主要会配置 Flink,Kafka 和 HDFS。

简介


Big Data Tools 插件可用于 Intellij Idea 2019.2 及以后的版本。它提供了使用 Zeppelin,AWS S3,Spark,Google Cloud Storage,Minio,Linode,数字开放空间,Microsoft Azure 和 Hadoop 分布式文件系统(HDFS)来监视和处理数据的特定功能。


下面来看一下 Big Data Tools 的安装和使用,主要会配置 Flink,Kafka 和 HDFS。


安装 Big Data Tools 插件



image-20220522170703800


点击安装完成之后,需要重启一下 IDEA,插件才能生效,上面我已经安装过了。


Flink 配置(不推荐)

flink 需要下载即将发布的 IDEA 2022.2-EAP 版本才有,因为之前是不支持 flink 的。



image-20220522202515845


先点击 IDEA 右侧的 Big Data Tools,然后点击加号就可以添加 Flink 组件了。



image-20220522202819718


输入 Flink WEB UI 地址,点击 OK 就可以了。



image-20220522203842116


这样就可以直接在 IDEA 里面查看 Flink Dashboard,跟在 Web UI 上的功能完全一样,点击箭头所指的地方可以直接跳转到 Flink UI,虽然可以直接在 IDEA 里面查看 Dashboard,但是个人感觉还是在 Flink Web UI 上查看更加方便,可能是看习惯了。不是太推荐这个功能。


Kafka 配置(推荐)


然后来看一下 kafka 的配置。



image-20220522205522598


同样的,点击加号选择 Kafka 然后设置一下 Kafka 集群的 broker list ,点击 OK 就行了。



截屏2022-05-22 下午8.58.27


可以看到所有 topic 的详细信息,包括 partition,replicas 等,还可以查看 Consumers 的情况,这个功能还是不错的,虽然现在也有很多开源的 kafka 监控工具,但是配置起来还是有一点门槛,这个插件的配置几乎是零门槛,对于简单的查看 kafka 的信息还是非常不错的。


HDFS 配置(推荐)

最后再来配置一个 HDFS。



image-20220522211549151


Authentication type 选择 Explicit uri 然后设置一下 HDFS 服务地址就可以了。



image-20220522212131641


直接就可以查看 HDFS 上的目录及文件,这个功能还是非常方便的,就不用在登录 HDFS-Web 去查看文件了。


总结


从 Big Data Tools 插件的安装配置到使用,主要介绍了 Flink,Kafka,HDFS,这三个组件的配置使用,整个配置过程是非常简单的,当然这个插件支持的组件远不止这些,包括像 spark,hive,zeppelin 等都是支持的,感兴趣的同学可以自己在 IDEA 里面体验一下,整体上来说,这个插件还是非常有用的。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
存储 分布式计算 API
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
117 0
|
5天前
|
人工智能 分布式计算 数据处理
MaxCompute Data + AI:构建 Data + AI 的一体化数智融合
本次分享将分为四个部分讲解:第一部分探讨AI时代数据开发范式的演变,特别是MaxCompute自研大数据平台在客户工作负载和任务类型变化下的影响。第二部分介绍MaxCompute在资源大数据平台上构建的Data + AI核心能力,提供一站式开发体验和流程。第三部分展示MaxCompute Data + AI的一站式开发体验,涵盖多模态数据管理、交互式开发环境及模型训练与部署。第四部分分享成功落地的客户案例及其收益,包括互联网公司和大模型训练客户的实践,展示了MaxFrame带来的显著性能提升和开发效率改进。
|
2月前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
245 3
【赵渝强老师】基于大数据组件的平台架构
|
3月前
|
存储 NoSQL 大数据
大数据中数据存储 (Data Storage)
【10月更文挑战第17天】
223 2
|
3月前
|
数据采集 算法 大数据
大数据中数据清洗 (Data Cleaning)
【10月更文挑战第17天】
346 1
|
3月前
|
SQL 存储 分布式计算
大数据-157 Apache Kylin 背景 历程 特点 场景 架构 组件 详解
大数据-157 Apache Kylin 背景 历程 特点 场景 架构 组件 详解
50 9
|
2月前
|
SQL 分布式计算 大数据
【赵渝强老师】大数据生态圈中的组件
本文介绍了大数据体系架构中的主要组件,包括Hadoop、Spark和Flink生态圈中的数据存储、计算和分析组件。数据存储组件包括HDFS、HBase、Hive和Kafka;计算组件包括MapReduce、Spark Core、Flink DataSet、Spark Streaming和Flink DataStream;分析组件包括Hive、Spark SQL和Flink SQL。文中还提供了相关组件的详细介绍和视频讲解。
|
3月前
|
消息中间件 监控 Java
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
87 1
|
4月前
|
存储 分布式计算 资源调度
两万字长文向你解密大数据组件 Hadoop
两万字长文向你解密大数据组件 Hadoop
162 11
|
3月前
|
消息中间件 资源调度 大数据
大数据-112 Flink DataStreamAPI 程序输入源 DataSource 基于文件、集合、Kafka连接器
大数据-112 Flink DataStreamAPI 程序输入源 DataSource 基于文件、集合、Kafka连接器
62 0