【Sqoop】(二)Sqoop 的简单使用案例

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 【Sqoop】(二)Sqoop 的简单使用案例

文章目录


一、导入数据

1.1 RDBMS到HDFS

1.2 RDBMS到Hive

1.3 RDBMS到Hbase


二、导出数据

2.1 HIVE/HDFS到RDBMS

三、脚本打包


一、导入数据


在Sqoop中,“导入”概念指:从非大数据集群(RDBMS)向大数据集群(HDFS,HIVE,HBASE)中传输数据,叫做:导入,即使用import关键字。


1.1 RDBMS到HDFS


确定Mysql服务开启正常


在Mysql中新建一张表并插入一些数据

$ mysql -uroot -p000000
mysql> create database company;
mysql> create table company.staff(id int(4) primary key not null auto_increment, name varchar(255), sex varchar(255));
mysql> insert into company.staff(name, sex) values('Thomas', 'Male');
mysql> insert into company.staff(name, sex) values('Catalina', 'FeMale');


导入数据


(1)全部导入

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--table staff \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t"


(2)查询导入

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--query 'select name,sex from staff where id <=1 and $CONDITIONS;'


提示:must contain '$CONDITIONS' in WHERE clause.


如果query后使用的是双引号,则$CONDITIONS前必须加转义字符,防止shell识别为自己的变量。


(3)导入指定列

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--columns id,sex \
--table staff


提示:columns中如果涉及到多列,用逗号分隔,分隔时不要添加空格


(4)使用sqoop关键字筛选查询导入数据

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--table staff \
--where "id=1"


1.2 RDBMS到Hive

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--table staff \
--num-mappers 1 \
--hive-import \
--fields-terminated-by "\t" \
--hive-overwrite \
--hive-table staff_hive


提示:该过程分为两步,第一步将数据导入到HDFS,第二步将导入到HDFS的数据迁移到Hive仓库,第一步默认的临时目录是自己配置的表名


1.3 RDBMS到Hbase

$ bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--table company \
--columns "id,name,sex" \
--column-family "info" \
--hbase-create-table \
--hbase-row-key "id" \
--hbase-table "hbase_company" \
--num-mappers 1 \
--split-by id


提示:sqoop1.4.6只支持HBase1.0.1之前的版本的自动创建HBase表的功能


解决方案:手动创建HBase表

hbase> create 'hbase_company,'info'


(5) 在HBase中scan这张表得到如下内容

hbase> scan ‘hbase_company’


二、导出数据


在Sqoop中,“导出”概念指:从大数据集群(HDFS,HIVE,HBASE)向非大数据集群(RDBMS)中传输数据,叫做:导出,即使用export关键字。


2.1 HIVE/HDFS到RDBMS

$ bin/sqoop export \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--table staff \
--num-mappers 1 \
--export-dir /user/hive/warehouse/staff_hive \
--input-fields-terminated-by "\t"


提示:Mysql中如果表不存在,不会自动创建


三、脚本打包


使用opt格式的文件打包sqoop命令,然后执行


创建一个.opt文件

$ mkdir opt
$ touch opt/job_HDFS2RDBMS.opt


编写sqoop脚本


$ vi opt/job_HDFS2RDBMS.opt
export
--connect
jdbc:mysql://hadoop102:3306/company
--username
root
--password
000000
--table
staff
--num-mappers
1
--export-dir
/user/hive/warehouse/staff_hive
--input-fields-terminated-by
"\t"


执行该脚本

$ bin/sqoop --options-file opt/job_HDFS2RDBMS.opt



相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
分布式计算 关系型数据库 MySQL
Sqoop实操案例-互联网招聘数据迁移
Sqoop实操案例-互联网招聘数据迁移
116 0
|
8月前
|
SQL 关系型数据库 MySQL
Sqoop【付诸实践 01】Sqoop1最新版 MySQL与HDFS\Hive\HBase 核心导入导出案例分享+多个WRAN及Exception问题处理(一篇即可学会在日常工作中使用Sqoop)
【2月更文挑战第9天】Sqoop【付诸实践 01】Sqoop1最新版 MySQL与HDFS\Hive\HBase 核心导入导出案例分享+多个WRAN及Exception问题处理(一篇即可学会在日常工作中使用Sqoop)
310 7
|
SQL 分布式计算 资源调度
Sqoop1的安装配置及入门案例
Sqoop1的安装配置及入门案例
191 0
Sqoop1的安装配置及入门案例
|
SQL 分布式计算 Hadoop
使用Sqoop导出Mysql数据到Hive(实战案例)
使用Sqoop导出Mysql数据到Hive(实战案例)
621 0
使用Sqoop导出Mysql数据到Hive(实战案例)
|
分布式计算 关系型数据库 MySQL
|
8月前
|
SQL 分布式计算 监控
Sqoop数据迁移工具使用与优化技巧:面试经验与必备知识点解析
【4月更文挑战第9天】本文深入解析Sqoop的使用、优化及面试策略。内容涵盖Sqoop基础,包括安装配置、命令行操作、与Hadoop生态集成和连接器配置。讨论数据迁移优化技巧,如数据切分、压缩编码、转换过滤及性能监控。此外,还涉及面试中对Sqoop与其他ETL工具的对比、实际项目挑战及未来发展趋势的讨论。通过代码示例展示了从MySQL到HDFS的数据迁移。本文旨在帮助读者在面试中展现Sqoop技术实力。
578 2
|
数据采集 SQL 分布式计算
数据处理 、大数据、数据抽取 ETL 工具 DataX 、Kettle、Sqoop
数据处理 、大数据、数据抽取 ETL 工具 DataX 、Kettle、Sqoop
1475 0
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
105 3
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
112 0
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
52 0