数据处理 、大数据、数据抽取 ETL 工具 DataX 、Kettle、Sqoop

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
性能测试 PTS,5000VUM额度
简介: 数据处理 、大数据、数据抽取 ETL 工具 DataX 、Kettle、Sqoop

@[toc]

数据处理 、大数据、数据抽取 ETL 工具 DataX 、Kettle、Sqoop


1、DataX


image.png

2、Kettle


Kettle 一个开源的 ETL 工具,后面改名为 Pentaho Data Integration (但是国内仍然喜欢叫 Kettle)
参考 https://baike.baidu.com/item/Kettle/5920713?fr=aladdin

1、以 Java 开发,支持跨平台运行
2、支持 100% 无编码、拖拽方式开发ETL数据管道
3、可对接包括传统数据库、文件、大数据平台、接口、流数据等数据源
4、支持ETL数据管道加入机器学习算法

3、Sqoop


简介
Sqoop 产生背景是因为大多数使用 Hadoop 技术处理大数据的企业,数据大部分存储在关系型数据库里面,但是关系型数据库到 Hadoop 的数据传输因为没有工具支持
所以就变得比较困难,然后才产生了 Sqoop。 Sqoop 是连接关系型数据库和 Hadoop 的桥梁

Sqoop 的主要功能是把数据从关系型数据库导入到 Hadoop 或者相关的数据库中,如 Hive 、Hbase

4、DataX 和 Kettle 的对比


DataX 特点

易用性:没有界面,以执行脚本方式运行,对使用人员技术要求较高。(可以引入官网的提供的datax-web)
性能:数据抽取性能高。
部署:可独立部署
适用场景:在异构数据库/文件系统之间高速交换数据。

Kettle 特点

易用性:有可视化设计器进行可视化操作,使用简单。
功能强大:不仅能进行数据传输,能同时进行数据清洗转换等操作。
支持多种源:支持各种数据库、FTP、文件、rest接口、hdfs、Hive等源。
部署方便:独立部署,不依赖第三方产品
适用场景:数据量及增量不大,业务规则变化较快,要求可视化操作,对技术人员的技术门槛要求低。

DataX                        Kettle
----------------------------------------------------------------
MySQL                        AS/400
Oracle                        Apache Derby
SQLServer                    Cloudera Impala
DRDS                        ExtenDB
ODPS                        Firebird SQL
ADS                            Generic database
Hbase                        Google BigQuery
MongoDB                        H2
Hive                        Hadoop Hive
FTP                            Hadoop Hive 2
HDFS                        MySQL
Elasticsearch                Oracle
OpenTSDB                    SparkSQL
TSDB                        Sybase

虽然 Kettle 支持的数据源更多,但是 DataX 支持的数据源更加主流

DataX 适合做数据同步工作,kettle 适合数据清洗,转换工作
DataX 对于数据库压力比较小,全量读取速度优于kettle ,有 3 倍左右的差距
DataX 原生不支持增量同步,需要自己改进

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4月前
|
分布式计算 DataWorks 关系型数据库
MaxCompute 生态系统中的数据集成工具
【8月更文第31天】在大数据时代,数据集成对于构建高效的数据处理流水线至关重要。阿里云的 MaxCompute 是一个用于处理大规模数据集的服务平台,它提供了强大的计算能力和丰富的生态系统工具来帮助用户管理和处理数据。本文将详细介绍如何使用 DataWorks 这样的工具将 MaxCompute 整合到整个数据处理流程中,以便更有效地管理数据生命周期。
134 0
|
27天前
|
分布式计算 大数据 BI
ClickHouse与大数据生态整合:从ETL到BI报表
【10月更文挑战第27天】在这个数据驱动的时代,企业越来越依赖于数据来做出关键决策。而高效的数据处理和分析能力则是支撑这一需求的基础。作为一位数据工程师,我有幸参与到一个项目中,该项目旨在利用ClickHouse与Hadoop、Spark、Flink等大数据处理框架的整合,构建一个从数据提取(Extract)、转换(Transform)、加载(Load)到最终生成商业智能(BI)报表的全流程解决方案。以下是我在这个项目中的经验和思考。
47 1
|
4月前
|
数据采集 监控 大数据
大数据中的ETL过程详解
【8月更文挑战第25天】ETL过程在大数据中扮演着至关重要的角色。通过合理设计和优化ETL过程,企业可以高效地整合和利用海量数据资源,为数据分析和决策提供坚实的基础。同时,随着技术的不断进步和发展,ETL过程也将不断演进和创新,以更好地满足企业的数据需求。
|
4月前
|
关系型数据库 MySQL 大数据
DataX:数据同步的超音速英雄!阿里开源工具带你飞越数据传输的银河系,告别等待和故障的恐惧!快来见证这一数据工程的奇迹!
【8月更文挑战第13天】DataX是由阿里巴巴开源的一款专为大规模数据同步设计的工具,在数据工程领域展现强大竞争力。它采用插件化架构,支持多种数据源间的高效迁移。相较于Apache Sqoop和Flume,DataX通过并发写入和流处理实现了高性能同步,并简化了配置流程。DataX还支持故障恢复,能够在同步中断后继续执行,节省时间和资源。这些特性使其成为构建高效可靠数据同步方案的理想选择。
327 2
|
6月前
|
数据采集 DataWorks 安全
DataWorks产品使用合集之选择独享调度,数据集成里可以使用,但是数据地图里面测试无法通过,是什么原因导致的
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
58 0
DataWorks产品使用合集之选择独享调度,数据集成里可以使用,但是数据地图里面测试无法通过,是什么原因导致的
|
5月前
|
SQL DataWorks 关系型数据库
DataWorks产品使用合集之数据集成时源头提供数据库自定义函数调用返回数据,数据源端是否可以写自定义SQL实现
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
5月前
|
DataWorks 安全 API
DataWorks产品使用合集之是否可以不使用DataWorks进行EMR的调度和DataX数据导入
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
5月前
|
分布式计算 DataWorks 数据挖掘
DataWorks操作报错合集之上传数据时报错com.alibaba.datax.common.exception.DataXException: Code:[UnstructuredStorageReader-11],该如何排查
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
5月前
|
数据采集 分布式计算 大数据
MaxCompute产品使用合集之数据集成中进行数据抽取时,是否可以定义使用和源数据库一样的字符集进行抽取
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
4月前
|
数据采集 SQL DataWorks
【颠覆想象的数据巨匠】DataWorks——远超Excel的全能数据集成与管理平台:一场电商数据蜕变之旅的大揭秘!
【8月更文挑战第7天】随着大数据技术的发展,企业对数据处理的需求日益增长。DataWorks作为阿里云提供的数据集成与管理平台,为企业提供从数据采集、清洗、加工到应用的一站式解决方案。不同于桌面级工具如Excel,DataWorks具备强大的数据处理能力和丰富的功能集,支持大规模数据处理任务。本文通过电商平台案例,展示了如何使用DataWorks构建数据处理流程,包括多源数据接入、SQL任务实现数据采集、数据清洗加工以提高质量,以及利用分析工具挖掘数据价值的过程。这不仅凸显了DataWorks在大数据处理中的核心功能与优势,还展示了其相较于传统工具的高扩展性和灵活性。
139 0