SPARK SQL中 Grouping sets转Expand怎么实现的(逻辑计划级别)

简介: SPARK SQL中 Grouping sets转Expand怎么实现的(逻辑计划级别)

背景

本文基于spark 3.1.2

之前在做bug调试的时候遇到了expand的问题,在此记录一下

分析

运行该sql:

create table test_a_pt(col1 int, col2 int,pt string) USING parquet PARTITIONED BY (pt);
insert into table test_a_pt values(1,2,'20220101'),(3,4,'20220101'),(1,2,'20220101'),(3,4,'20220101'),(1,2,'20220101'),(3,4,'20220101');
select count(*),col1 as alias
from test_a_pt
group by col1,col2
grouping sets (col1,col2)
order by col1,col2 ;

可以看到如下逻辑计划的变化(只截取grouping sets相关的):

=== Applying Rule org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations ===
 'Sort ['col1 ASC NULLS FIRST], true                                                                          'Sort ['col1 ASC NULLS FIRST], true
 +- 'GroupingSets [ArrayBuffer('col1), ArrayBuffer('col2)], ['col1, 'col2], ['col1, 'count(1) AS alias#221]   +- 'GroupingSets [ArrayBuffer('col1), ArrayBuffer('col2)], ['col1, 'col2], ['col1, 'count(1) AS alias#221]
!   +- 'UnresolvedRelation [test_table], [], false                                                               +- 'SubqueryAlias spark_catalog.default.test_table
!                                                                                                                   +- 'UnresolvedCatalogRelation `default`.`test_table`, [], false

对于GroupingSets里面的信息做一下解释:

'GroupingSets [ArrayBuffer('col1), ArrayBuffer('col2)], ['col1, 'col2], ['col1, 'count(1) AS alias#221]

*`*表示还未解析的计划,


[ArrayBuffer('col1), ArrayBuffer('col2)] 是grouping sets里面的两个值col1和col2


['col1, 'col2] 是group by后面的值col1和col2


['col1, 'count(1) AS alias#221] 是聚合表达式的值,也就是select后面的值 count(*),col1 as alias


接下来就是:

ResolveGroupingAnalytics计划:

06:49:07.323 WARN org.apache.spark.sql.catalyst.rules.PlanChangeLogger: 
=== Applying Rule org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveGroupingAnalytics ===
 'Sort ['col1 ASC NULLS FIRST], true                                                                                         'Sort ['col1 ASC NULLS FIRST], true
!+- 'GroupingSets [ArrayBuffer(col1#223), ArrayBuffer(col2#224)], [col1#223, col2#224], [col1#223, count(1) AS alias#221L]   +- Aggregate [col1#229, col2#230, spark_grouping_id#228L], [col1#229, count(1) AS alias#221L]
!   +- SubqueryAlias spark_catalog.default.test_table                                                                           +- Expand [List(col1#223, col2#224, pt#225, col1#226, null, 1), List(col1#223, col2#224, pt#225, null, col2#227, 2)], [col1#223, col2#224, pt#225, col1#229, col2#230, spark_grouping_id#228L]
!      +- Relation[col1#223,col2#224,pt#225] parquet                                                                               +- Project [col1#223, col2#224, pt#225, col1#223 AS col1#226, col2#224 AS col2#227]
!                                                                                                                                     +- SubqueryAlias spark_catalog.default.test_table
!                                                                                                                                        +- Relation[col1#223,col2#224,pt#225] parquet

代码自己可以去看,我们从逻辑来上分析:

'GroupingSets [ArrayBuffer(col1#223), ArrayBuffer(col2#224)], [col1#223, col2#224], [col1#223, count(1) AS alias#221L] 
                                        ||
                                        \/
 +- Aggregate [col1#229, col2#230, spark_grouping_id#228L], [col1#229, count(1) AS alias#221L]                                   
  +- Expand [List(col1#223, col2#224, pt#225, col1#226, null, 1), List(col1#223, col2#224, pt#225, null, col2#227, 2)], [col1#223, col2#224, pt#225, col1#229, col2#230, spark_grouping_id#228L]
   +- Project [col1#223, col2#224, pt#225, col1#223 AS col1#226, col2#224 AS col2#227]

把最重要的转换提取出来做解释:

+- Project [col1#223, col2#224, pt#225, col1#223 AS col1#226, col2#224 AS col2#227]

前三个expression col1#223, col2#224, pt#225 是根据 Relation(也就是从表test_a_pt直接获取到的,和表的字段保持一致)


后面的expression col1#223 AS col1#226, col2#224 AS col2#227 是根据grouping sets和group by的值整合过来的(并且会加上别名,取别名是为了Expand用的),如果没有group by 这个表达式才会取grouping sets的值,否则就取group by后面的值(目前spark 3.1.2的做法是group by的属性肯定包含了grouping sets里面的属性,SPARK-33229可以支持):

如:group by col1,col2 grouping sets (col1,col2) 
则取 col1,col2 
如:grouping sets (col1,col2) 
则取 col1,col2

对于Expand:

Expand [List(col1#223, col2#224, pt#225, col1#226, null, 1), List(col1#223, col2#224, pt#225, null, col2#227, 2)], [col1#223, col2#224, pt#225, col1#229, col2#230, spark_grouping_id#228L]

List(col1#223, col2#224, pt#225, col1#226, null, 1), List(col1#223, col2#224, pt#225, null, col2#227, 2) 这些是expand的输入expression,其中


List(col1#223, col2#224, pt#225, col1#226, null, 1) 中的

col1#223, col2#224, pt#225 也是从表test_a_pt直接获取到的字段,和表的字段保持一致

col1#226 是从 Project的col1#223 AS col1#226取到的(作为Expand的输入表达式),

null 根据grouping sets的特性而增加的一行值(作为Expand的输入表达式)

1 也是增加的一行值(作为Expand的输入表达式)

List(col1#223, col2#224, pt#225, null, col2#227, 2) 解释也和上面一样,只不过null的位置发生了变化,而1变成了2,这是为了做聚合的时候进行区分

[col1#223, col2#224, pt#225, col1#229, col2#230, spark_grouping_id#228L] 这些是expand的输出expression,其中


col1#223, col2#224, pt#225 和表test_a_pt的字段值一样

col1#229, col2#230, spark_grouping_id#228L 是expand做的的扩展字段,

因为col1和col2的值可能为null,所以exprId和表test_a_pt不一致,

spark_grouping_id#228L 纯属于虚拟字段

而且expand的输入字段是一个Seq(Seq),这在ExpandExec的时候,会进行row的倍数扩大,Seq里的元素有几个,就会扩展多少倍。


对于Aggregate

Aggregate [col1#229, col2#230, spark_grouping_id#228L], [col1#229, count(1) AS alias#221L]  

其中,


[col1#229, col2#230, spark_grouping_id#228L]就是把Expand的输出字段,按照这三个表达式进行group by 聚合

[col1#229, count(1) AS alias#221L] 是聚合表达式,包括聚合的部分字段和部分聚合函数,也就是select语句count(*),col1 as alias

至此Grouping sets 转Expand就分析完了。


相关文章
|
4天前
|
SQL 分布式计算 Java
Spark SQL向量化执行引擎框架Gluten-Velox在AArch64使能和优化
本文摘自 Arm China的工程师顾煜祺关于“在 Arm 平台上使用 Native 算子库加速 Spark”的分享,主要内容包括以下四个部分: 1.技术背景 2.算子库构成 3.算子操作优化 4.未来工作
|
2月前
|
SQL JSON 分布式计算
【赵渝强老师】Spark SQL的数据模型:DataFrame
本文介绍了在Spark SQL中创建DataFrame的三种方法。首先,通过定义case class来创建表结构,然后将CSV文件读入RDD并关联Schema生成DataFrame。其次,使用StructType定义表结构,同样将CSV文件读入RDD并转换为Row对象后创建DataFrame。最后,直接加载带有格式的数据文件(如JSON),通过读取文件内容直接创建DataFrame。每种方法都包含详细的代码示例和解释。
|
3月前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
108 0
|
3月前
|
SQL 分布式计算 算法
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
119 0
|
3月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
89 0
|
3月前
|
SQL 分布式计算 大数据
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
109 0
|
3月前
|
SQL 存储 分布式计算
大数据-93 Spark 集群 Spark SQL 概述 基本概念 SparkSQL对比 架构 抽象
大数据-93 Spark 集群 Spark SQL 概述 基本概念 SparkSQL对比 架构 抽象
62 0
|
SQL 索引 Perl
【SQL 优化】异常的逻辑读
实验环境 SQL> select * from v$version; BANNER                                                                          --------------...
665 0
|
4月前
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
|
6月前
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
158 13