【大数据技术Hadoop+Spark】Spark SQL、DataFrame、Dataset的讲解及操作演示(图文解释)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 【大数据技术Hadoop+Spark】Spark SQL、DataFrame、Dataset的讲解及操作演示(图文解释)

一、Spark SQL简介

park SQL是spark的一个模块,主要用于进行结构化数据的SQL查询引擎,开发人员能够通过使用SQL语句,实现对结构化数据的处理,开发人员可以不了解Scala语言和Spark常用API,通过spark SQL,可以使用Spark框架提供的强大的数据分析能力。spark SQL前身为Shark。Shark是Spark上的数据仓库,最初设计成与Hive兼容,但是该项目于2014年项目因设计问题中止研发,转向Spark SQL。Spark SQL全面继承了Shark,并进行了优化。 Spark SQL主要提供了以下三个功能:

1)Spark SQL可从各种结构化数据源中读取数据,进行数据分析。

2)Spark SQL包含行业标准的JDBC和ODBC连接方式,因此它不局限于在Spark程序内使用SQL语句进行查询。

3)Spark SQL可以无缝地将SQL查询与Spark程序进行结合,它能够将结构化数据作为Spark中的分布式数据集(RDD)进行查询。

二、Spark架构

Spark SQL架构与Hive架构相比,把底层的MapReduce执行引擎更改为Spark,还修改了Catalyst优化器,Spark SQL快速的计算效率得益于Catalyst优化器。从HQL被解析成语法抽象树起,执行计划生成和优化的工作全部交给Spark SQL的Catalyst优化器进行负责和管理。

三、Dataframe

1:Dataframe简介

Spark SQL使用的数据抽象并非是RDD,而是DataFrame。

在Spark 1.3.0版本之前,DataFrame被称为SchemaRDD。

DataFrame使Spark具备处理大规模结构化数据的能力。 在Spark中,DataFrame是一种以RDD为基础的分布式数据集。 DataFrame的结构类似传统数据库的二维表格,可以从很多数据源中创建,如结构化文件、外部数据库、Hive表等数据源。

DataFrame可以看作是分布式的Row对象的集合,在二维表数据集的每一列都带有名称和类型,这就是Schema元信息,这使得Spark框架可获取更多数据结构信息,从而对在DataFrame背后的数据源以及作用于DataFrame之上数据变换进行针对性的优化,最终达到提升计算效率。

2:Dataframe的创建

创建DataFrame的两种基本方式:

已存在的RDD调用toDF()方法转换得到DataFrame。

通过Spark读取数据源直接创建DataFrame。

若使用SparkSession方式创建DataFrame,可以使用spark.read从不同类型的文件中加载数据创建DataFrame。spark.read的具体操作,如下所示。

具体操作示例如下: 首先在linux操作系统hadoop文件夹下存了两个文件,一个是people.json,存的是 json格式数据,内容如下: {"name":"张三"} {"name":"李四", "age":45} {"name":"王五", "age":28} 另一个是people.txt,存的是普通文本格式,内容如下: 张三, 29 李四, 30 王五, 19。 打开spark-shell,如图所示

读取json文件创建DataFrame,命令如下

读取txt文件创建DataFrame,命令如下

已存在的RDD调用toDF()方法转换得到DataFrame,具体操作如下:

(1)从文件系统加载数据创建RDD

val lineRDD = sc.textFile("file:///hadoop/people").Map(_.split(","))

(2)定义类

case class Person(name:String,age:Int)

(3)实例化类并赋值

val personRDD = lineRDD.Map(x => Person(x(0), x(1).toInt))

(4)调用toDF()方法转换得到DataFrame

val personDF = personRDD.toDF()

3:Dataframe常用操作

DataFrame提供了两种语法风格,即DSL风格语法和SQL风格语法。二者在功能上并无区别,仅仅是根据用户习惯,自定义选择操作方式。

DataFrame提供了一个领域特定语言(DSL)以方便操作结构化数据。

在程序中直接使用spark.sql()方式执行SQL查询,结果将作为一个DataFrame返回,使用SQL风格操作的前提是将DataFrame注册成一个临时表。

DSL风格操作DataFrame的常用方法,具体如下表如示。

DSL风格操作Dataframe实例如下

SQL风格操作Dataframe

三、Dataset

Dataset是从Spark1.6 Alpha版本中引入的一个新的数据抽象结构,最终在Spark2.0版本被定义成Spark新特性。Dataset提供了特定域对象中的强类型集合,也就是在RDD的每行数据中添加了类型约束条件,只有约束条件的数据类型才能正常运行。Dataset结合了RDD和DataFrame的优点,并且可以调用封装的方法以并行方式进行转换等操作。

RDD、DataFrame及Dataset的区别

RDD数据的表现形式,即序号(1),此时RDD数据没有数据类型和元数据信息。

DataFrame数据的表现形式,即序号(2),此时DataFrame数据中添加Schema元数据信息(列名和数据类型,如ID:String),DataFrame每行类型固定为Row类型,每列的值无法直接访问,只有通过解析才能获取各个字段的值。

Dataset数据的表现形式,序号(3)和(4),其中序号(3)是在RDD每行数据的基础之上,添加一个数据类型(value:String)作为Schema元数据信息。而序号(4)每行数据添加People强数据类型,在Dataset[Person]中里存放了3个字段和属性,Dataset每行数据类型可自定义,一旦定义后,就具有错误检查机制。

1、通过SparkSession中的createDataset来创建Dataset

scala > val personDs=spark.createDataset(sc.textFile("/spark/person.txt"))
personDs: org.apache.spark.sql.Dataset[String] = [value: string]
scala > personDs.show()
+---------------+
|          value     |
+---------------+
|1  zhangsan 20|
|2  lisi           29|
|3  wangwu  25|
|4  zhaoliu   30 |     
|5  tianqi      35|
|6  jerry        40|
+---------------+

2、DataFrame通过“as[ElementType]”方法转换得到Dataset

scala> spark.read.text("/spark/person.txt").as[String]
res14: org.apache.spark.sql.Dataset[String] = [value: string]
scala> spark.read.text("/spark/person.txt").as[String].toDF()
res15: org.apache.spark.sql.DataFrame = [value: string]

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
29天前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
123 4
|
2月前
|
存储 分布式计算 Hadoop
Hadoop框架解析:大数据处理的核心技术
组件是对数据和方法的封装,从用户角度看是实现特定功能的独立黑盒子,能够有效完成任务。组件,也常被称作封装体,是对数据和方法的简洁封装形式。从用户的角度来看,它就像是一个实现了特定功能的黑盒子,具备输入和输出接口,能够独立完成某些任务。
|
3月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
184 0
|
1月前
|
SQL 分布式计算 大数据
我与ODPS的十年技术共生之路
ODPS十年相伴,从初识的分布式计算到共生进化,突破架构边界,推动数据价值深挖。其湖仓一体、隐私计算与Serverless能力,助力企业降本增效,赋能政务与商业场景,成为数字化转型的“数字神经系统”。
|
2月前
|
数据采集 自然语言处理 分布式计算
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
|
2月前
|
SQL JSON 分布式计算
Spark SQL架构及高级用法
Spark SQL基于Catalyst优化器与Tungsten引擎,提供高效的数据处理能力。其架构涵盖SQL解析、逻辑计划优化、物理计划生成及分布式执行,支持复杂数据类型、窗口函数与多样化聚合操作,结合自适应查询与代码生成技术,实现高性能大数据分析。
|
2月前
|
存储 分布式计算 算法
Java 大视界 -- Java 大数据在智能教育在线考试监考与作弊检测中的技术创新(193)
本文探讨了Java大数据技术在智能教育在线考试监考与作弊检测中的创新应用。随着在线考试的普及,作弊问题日益突出,传统监考方式难以应对。通过Java大数据技术,可实现考生行为分析、图像识别等多维度监控,提升作弊检测的准确性与效率。结合Hadoop与Spark等技术,系统能实时处理海量数据,构建智能监考体系,保障考试公平性,推动教育评价体系的数字化转型。
|
2月前
|
SQL 缓存 监控
大数据之路:阿里巴巴大数据实践——实时技术与数据服务
实时技术通过流式架构实现数据的实时采集、处理与存储,支持高并发、低延迟的数据服务。架构涵盖数据分层、多流关联,结合Flink、Kafka等技术实现高效流计算。数据服务提供统一接口,支持SQL查询、数据推送与定时任务,保障数据实时性与可靠性。
|
传感器 分布式计算 安全
Java 大视界 -- Java 大数据在智能安防入侵检测系统中的多源数据融合与分析技术(171)
本文围绕 Java 大数据在智能安防入侵检测系统中的应用展开,剖析系统现状与挑战,阐释多源数据融合及分析技术,结合案例与代码给出实操方案,提升入侵检测效能。
Java 大视界 -- Java 大数据在智慧文旅虚拟场景构建与沉浸式体验增强中的技术支撑(168)
本文围绕 Java 大数据在智慧文旅领域的应用展开,系统阐述了数据采集、3D 建模、游客行为分析等核心技术的原理与实现,结合实际案例,全方位展示了 Java 大数据在推动智慧文旅发展中的显著价值。