三、Spark 运行模式及集群角色
(1)Spark运行模式
(2)Spark集群角色
下图是spark的集群角色图,主要有集群管理节点cluster manager,工作节点worker,执行器executor,驱动器driver和应用程序application 五部分组成,下面详细说明每部分的特点。
(1)Cluster Manager
集群管理器,它存在于Master进程中,主要用来对应用程序申请的资源进行管理,根据其部署模式的不同,可以分为local,standalone,yarn,mesos等模式。
(2)worker
worker是spark的工作节点,用于执行任务的提交,主要工作职责有下面四点:
worker节点通过注册机向cluster manager汇报自身的cpu,内存等信息。
worker 节点在spark master作用下创建并启用executor,executor是真正的计算单元。
spark master将任务Task分配给worker节点上的executor并执行运用。
worker节点同步资源信息和executor状态信息给cluster manager。
在yarn 模式下运行worker节点一般指的是NodeManager节点,standalone模式下运行一般指的是slave节点。
(3)executor
executor 是真正执行计算任务的组件,它是application运行在worker上的一个进程。这个进程负责Task的运行,它能够将数据保存在内存或磁盘存储中,也能够将结果数据返回给Driver。
(4)Application
application是Spark API 编程的应用程序,它包括实现Driver功能的代码和在程序中各个executor上要执行的代码,一个application由多个job组成。其中应用程序的入口为用户所定义的main方法。
(5)Driver
驱动器节点,它是一个运行Application中main函数并创建SparkContext的进程。application通过Driver 和Cluster Manager及executor进行通讯。它可以运行在application节点上,也可以由application提交给Cluster Manager,再由Cluster Manager安排worker进行运行。
Driver节点也负责提交Job,并将Job转化为Task,在各个Executor进程间协调Task的调度。
(6)sparkContext
sparkContext是整个spark应用程序最关键的一个对象,是Spark所有功能的主要入口点。核心作用是初始化spark应用程序所需要的组件,同时还负责向master程序进行注册等。
(3)Spark其他核心概念
(1)RDD
它是Spark中最重要的一个概念,是弹性分布式数据集,是一种容错的、可以被并行操作的元素集合,是Spark对所有数据处理的一种基本抽象。可以通过一系列的算子对rdd进行操作,主要分为Transformation和Action两种操作。
Transformation(转换):是对已有的RDD进行换行生成新的RDD,对于转换过程采用惰性计算机制,不会立即计算出结果。常用的方法有map,filter,flatmap等。
Action(执行):对已有对RDD对数据执行计算产生结果,并将结果返回Driver或者写入到外部存储中。常用到方法有reduce,collect,saveAsTextFile等。
(2)DAG
DAG是一个有向无环图,在Spark中, 使用 DAG 来描述我们的计算逻辑。主要分为DAG Scheduler 和Task Scheduler。
(3)DAG Scheduler
DAG Scheduler 是面向stage的高层级的调度器,DAG Scheduler把DAG拆分为多个Task,每组Task都是一个stage,解析时是以shuffle为边界进行反向构建的,每当遇见一个shuffle,spark就会产生一个新的stage,接着以TaskSet的形式提交给底层的调度器(task scheduler),每个stage封装成一个TaskSet。DAG Scheduler需要记录RDD被存入磁盘物化等动作,同时会需要Task寻找最优等调度逻辑,以及监控因shuffle跨节点输出导致的失败。
(4)Task Scheduler
Task Scheduler 负责每一个具体任务的执行。它的主要职责包括
任务集的调度管理
状态结果跟踪
物理资源调度管理
任务执行
获取结果
(5)Job
job是有多个stage构建的并行的计算任务,job是由spark的action操作来触发的,在spark中一个job包含多个RDD以及作用在RDD的各种操作算子。
(6)stage
DAG Scheduler会把DAG切割成多个相互依赖的Stage,划分Stage的一个依据是RDD间的宽窄依赖。
在对Job中的所有操作划分Stage时,一般会按照倒序进行,即从Action开始,遇到窄依赖操作,则划分到同一个执行阶段,遇到宽依赖操作,则划分一个新的执行阶段,且新的阶段为之前阶段的parent,然后依次类推递归执行。
child Stage需要等待所有的parent Stage执行完之后才可以执行,这时Stage之间根据依赖关系构成了一个大粒度的DAG。在一个Stage内,所有的操作以串行的Pipeline的方式,由一组Task完成计算。
(7)TaskSet Task
TaskSet 可以理解为一种任务,对应一个stage,是Task组成的任务集。一个TaskSet中的所有Task没有shuffle依赖可以并行计算。
Task是spark中最独立的计算单元,由Driver Manager发送到executer执行,通常情况一个task处理spark RDD一个partition。Task分为ShuffleMapTask和ResultTask两种,位于最后一个Stage的Task为ResultTask,其他阶段的属于ShuffleMapTask。
四、Spark作业运行流程
(1)Spark作业运行流程
spark应用程序以进程集合为单位在分布式集群上运行,通过driver程序的main方法创建sparkContext的对象与集群进行交互。具体运行流程如下:
sparkContext向cluster Manager申请CPU,内存等计算资源。
cluster Manager分配应用程序执行所需要的资源,在worker节点创建executor。
sparkContext将程序代码和task任务发送到executor上进行执行,代码可以是编译成的jar包或者python文件等。接着sparkContext会收集结果到Driver端。
(2) Spark RDD迭代过程
sparkContext创建RDD对象,计算RDD间的依赖关系,并组成一个DAG有向无环图。
DAGScheduler将DAG划分为多个stage,并将stage对应的TaskSet提交到集群的管理中心,stage的划分依据是RDD中的宽窄依赖,spark遇见宽依赖就会划分为一个stage,每个stage中包含来一个或多个task任务,避免多个stage之间消息传递产生的系统开销。
taskScheduler 通过集群管理中心为每一个task申请资源并将task提交到worker的节点上进行执行。
worker上的executor执行具体的任务。
(3)Yarn资源管理器介绍
spark 程序一般是运行在集群上的,spark on yarn是工作或生产上用的非常多的一种运行模式。
没有yarn模式前,每个分布式框架都要跑在一个集群上面,比如说Hadoop要跑在一个集群上,Spark用集群的时候跑在standalone上。这样的话整个集群的资源的利用率低,且管理起来比较麻烦。
yarn是分布式资源管理和任务管理管理,主要由ResourceManager,NodeManager和ApplicationMaster三个模块组成。
ResourceManager 主要负责集群的资源管理,监控和分配。对于所有的应用它有绝对的控制权和资源管理权限。
NodeManager 负责节点的维护,执行和监控task运行状况。会通过心跳的方式向ResourceManager汇报自己的资源使用情况。
yarn资源管理器的每个节点都运行着一个NodeManager,是ResourceManager的代理。如果主节点的ResourceManager宕机后,会连接ResourceManager的备用节点。
ApplicationMaster 负责具体应用程序的调度和资源的协调,它会与ResourceManager协商进行资源申请。ResourceManager以container容器的形式将资源分配给application进行运行。同时负责任务的启停。
container 是资源的抽象,它封装着每个节点上的资源信息(cpu,内存,磁盘,网络等),yarn将任务分配到container上运行,同时该任务只能使用container描述的资源,达到各个任务间资源的隔离。
(4)Spark程序在Yarn上执行流程
spark on yarn分为两种模式yarn-client模式,和yarn—cluster模式,一般线上采用的是yarn-cluster模式。
(1)yarn-client模式
driver在客户端本地执行,这种模式可以使得spark application和客户端进行交互,因为driver在客户端可以通过webUI访问driver的状态。同时Driver会与yarn集群中的Executor进行大量的通信,会造成客户机网卡流量的大量增加。
(2)yarn-cluster模式
Yarn-Cluster主要用于生产环境中,因为Driver运行在Yarn集群中某一台NodeManager中,每次提交任务的Driver所在的机器都是随机的,不会产生某一台机器网卡流量激增的现象,缺点是任务提交后不能看到日志。只能通过yarn查看日志。
下图是yarn-cluster运行模式:
client 向yarn提交应用程序,包含ApplicationMaster程序、启动ApplicationMaster的命令、需要在Executor中运行的程序等。
ApplicationMaster程序启动ApplicationMaster的命令、需要在Executor中运行的程序等。
ApplicationMaster向ResourceManager注册,这样用户可以直接通过ResourceManage查看应用程序的运行状态。
ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,启动Task。
Task向ApplicationMaster汇报运行的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务。
应用程序运行完成后,ApplicationMaster向ResourceManager申请注销并关闭自己。
五、基于WordCount程序开发
下面使用Java和Scala语言编写WordCount程序
(1)Java开发WordCount程序
package com.kfk.spark; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.api.java.function.VoidFunction; import scala.Tuple2; import java.util.Arrays; import java.util.Iterator; /** * @author : 蔡政洁 * @email :caizhengjie888@icloud.com * @date : 2020/11/22 * @time : 10:19 下午 */ public class WordCountJava { public static void main(String[] args) { SparkConf sparkConf = new SparkConf().setAppName("wordCountApp").setMaster("local"); JavaSparkContext sc = new JavaSparkContext(sparkConf); JavaRDD lines = sc.textFile("hdfs://bigdata-pro-m04:9000/user/caizhengjie/datas/wordcount.txt"); JavaRDD words = lines.flatMap(new FlatMapFunction<String,String>() { public Iterator call(String line) throws Exception { return Arrays.asList(line.split(" ")).iterator(); } }); JavaPairRDD word = words.mapToPair(new PairFunction<String,String,Integer>() { public Tuple2 call(String word) throws Exception { return new Tuple2(word,1); } }); JavaPairRDD wordcount = word.reduceByKey(new Function2<Integer,Integer,Integer>() { public Integer call(Integer v1, Integer v2) throws Exception { return v1+ v2; } }); wordcount.foreach(new VoidFunction<Tuple2<String,Integer>>() { public void call(Tuple2<String,Integer> o) throws Exception { System.out.println(o._1 + " : " + o._2); } }); } }
运行结果:
spark : 1 hive : 3 hadoop : 3 python : 1 flink : 2 java : 5 storm : 1 hbase : 1
(2)Scala开发WordCount程序
package com.kfk.spark import org.apache.spark.{SparkConf, SparkContext} /** * @author : 蔡政洁 * @email :caizhengjie888@icloud.com * @date : 2020/11/22 * @time : 10:48 下午 */ object WordCountScala { def main(args: Array[String]): Unit = { val sparkConf = new SparkConf().setAppName("wordCountApp").setMaster("local") val sc = new SparkContext(sparkConf) val lines = sc.textFile("hdfs://bigdata-pro-m04:9000/user/caizhengjie/datas/wordcount.txt") // val wordcount = lines.flatMap(line => line.split(" ")).map(word => (word,1)).reduceByKey((x,y) => (x+y)).foreach((_wordcount => println(_wordcount._1 + " : " + _wordcount._2)) val words = lines.flatMap(line => line.split(" ")) val word = words.map(word => (word,1)) val wordcount = word.reduceByKey((x,y) => (x+y)) // println(wordcount.collect().toList) wordcount.foreach(_wordcount => println(_wordcount._1 + " : " + _wordcount._2)) } }
运行结果:
spark : 1 hive : 3 hadoop : 3 python : 1 flink : 2 java : 5 storm : 1 hbase : 1
(3)程序打包提交Spark集群测试
bin/spark-submit --class com.kfk.spark.WordCountJava --master local[2] /opt/jars/wordcountjava.jar
运行结果:
spark : 1 hive : 3 hadoop : 3 python : 1 flink : 2 java : 5 storm : 1 hbase : 1