Spark SQL底层执行流程详解(一)

简介: Spark SQL底层执行流程详解

本文目录


一、Apache Spark

二、Spark SQL发展历程

三、Spark SQL底层执行原理

四、Catalyst 的两大优化


一、Apache Spark



Apache Spark是用于大规模数据处理的统一分析引擎,基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量硬件之上,形成集群。


Spark源码从1.x的40w行发展到现在的超过100w行,有1400多位大牛贡献了代码。整个Spark框架源码是一个巨大的工程。


二、Spark SQL发展历程



image.png


我们知道Hive实现了SQL on Hadoop,简化了MapReduce任务,只需写SQL就能进行大规模数据处理,但是Hive也有致命缺点,因为底层使用MapReduce做计算,查询延迟较高。


1. Shark的诞生


所以Spark在早期版本(1.0之前)推出了Shark,这是什么东西呢,Shark与Hive实际上还是紧密关联的,Shark底层很多东西还是依赖于Hive,但是修改了内存管理、物理计划、执行三个模块,底层使用Spark的基于内存的计算模型,从而让性能比Hive提升了数倍到上百倍。


产生了问题:


  1. 因为 Shark 执行计划的生成严重依赖 Hive,想要增加新的优化非常困难;
  2. Hive 是进程级别的并行,Spark 是线程级别的并行,所以 Hive 中很多线程不安全的代码不适用于 Spark;
  3. 由于以上问题,Shark 维护了 Hive 的一个分支,并且无法合并进主线,难以为继;
  4. 在 2014 年 7 月 1 日的 Spark Summit 上,Databricks 宣布终止对 Shark 的开发,将重点放到 Spark SQL 上。


2. SparkSQL-DataFrame诞生


解决问题:

  1. Spark SQL 执行计划和优化交给优化器 Catalyst;
  2. 内建了一套简单的 SQL 解析器,可以不使用 HQL;
  3. 还引入和 DataFrame 这样的 DSL API,完全可以不依赖任何 Hive 的组件。


新的问题

对于初期版本的 SparkSQL,依然有挺多问题,例如只能支持 SQL 的使用,不能很好的兼容命令式,入口不够统一等。


3. SparkSQL-Dataset诞生


SparkSQL 在 1.6 时代,增加了一个新的 API,叫做 Dataset,Dataset 统一和结合了 SQL 的访问和命令式 API 的使用,这是一个划时代的进步。


在 Dataset 中可以轻易的做到使用 SQL 查询并且筛选数据,然后使用命令式 API 进行探索式分析。


三、Spark SQL底层执行原理



Spark SQL 底层架构大致如下:



可以看到,我们写的SQL语句,经过一个优化器(Catalyst),转化为RDD,交给集群执行。


SQL到RDD中间经过了一个Catalyst,它就是Spark SQL的核心,是针对Spark SQL语句执行过程中的查询优化框架,基于Scala函数式编程结构。


我们要了解Spark SQL的执行流程,那么理解Catalyst的工作流程是非常有必要的。


一条SQL语句生成执行引擎可识别的程序,就离不开解析(Parser)、优化(Optimizer)、执行(Execution) 这三大过程。而Catalyst优化器在执行计划生成和优化的工作时候,它离不开自己内部的五大组件,如下所示:


  1. Parser模块:将SparkSql字符串解析为一个抽象语法树/AST。
  2. Analyzer模块:该模块会遍历整个AST,并对AST上的每个节点进行数据类型的绑定以及函数绑定,然后根据元数据信息Catalog对数据表中的字段进行解析。
  3. Optimizer模块:该模块是Catalyst的核心,主要分为RBO和CBO两种优化策略,其中RBO是基于规则优化,CBO是基于代价优化。
  4. SparkPlanner模块:优化后的逻辑执行计划OptimizedLogicalPlan依然是逻辑的,并不能被Spark系统理解,此时需要将OptimizedLogicalPlan转换成physical plan(物理计划)
  5. CostModel模块:主要根据过去的性能统计数据,选择最佳的物理执行计划。这个过程的优化就是CBO(基于代价优化)。


为了更好的对整个过程进行理解,下面通过简单的实例进行解释。


步骤1. Parser阶段:未解析的逻辑计划


Parser简单说就是将SQL字符串切分成一个一个的Token,再根据一定语义规则解析成一颗语法树。Parser模块目前都是使用第三方类库ANTLR进行实现的,包括我们熟悉的Hive、Presto、SparkSQL等都是由ANTLR实现的。



在这个过程中,会判断SQL语句是否符合规范,比如select from where 等这些关键字是否写对。当然此阶段不会对表名,表字段进行检查。


步骤2. Analyzer阶段:解析后的逻辑计划


通过解析后的逻辑计划基本有了骨架,此时需要基本的元数据信息来表达这些词素,最重要的元数据信息主要包括两部分:表的Scheme和基本函数信息,表的Scheme主要包括表的基本定义(列名、数据类型)、表的数据格式(Json、Text)、表的物理位置等,基本函数主要指类信息。


Analyzer会再次遍历整个语法树,对树上的每个节点进行数据类型绑定及函数绑定,比如people词素会根据元数据表信息解析为包含ageid以及name三列的表,people.age会被解析为数据类型的int的变量,sum被解析为特定的聚合函数。



此过程就会判断SQL语句的表名,字段名是否真的在元数据库里存在。


步骤3. Optimizer模块:优化过的逻辑计划


Optimizer优化模块是整个Catalyst的核心,上面提到优化器分为基于规则的优化(RBO)和基于代价优化(CBO)两种。基于规则的优化策略实际上就是对语法树进行一次遍历,模式匹配能够满足特定规则的节点,在进行相应的等价转换。下面介绍三种常见的规则:谓词下推(Predicate Pushdown) 、常量累加(Constant Folding) 、列值裁剪(Column Pruning) 。


  • 谓词下推(Predicate Pushdown)


image.png


上图左边是经过解析后的语法树,语法树中两个表先做join,之后在使用age>10进行filter。join算子是一个非常耗时的算子,耗时多少一般取决于参与join的两个表的大小,如果能够减少参与join两表的大小,就可以大大降低join算子所需的时间。


谓词下推就是将过滤操作下推到join之前进行,之后再进行join的时候,数据量将会得到显著的减少,join耗时必然降低。

相关文章
|
2天前
|
SQL 算法
基于若依的ruoyi-nbcio流程管理系统修改代码生成的sql菜单id修改成递增id(谨慎修改,大并发分布式有弊端)
基于若依的ruoyi-nbcio流程管理系统修改代码生成的sql菜单id修改成递增id(谨慎修改,大并发分布式有弊端)
|
2天前
|
SQL
flowable的流程任务统计sql(续)
flowable的流程任务统计sql(续)
|
2天前
|
SQL
flowable的流程任务统计sql
flowable的流程任务统计sql
|
7天前
|
SQL 分布式计算 数据可视化
数据分享|Python、Spark SQL、MapReduce决策树、回归对车祸发生率影响因素可视化分析
数据分享|Python、Spark SQL、MapReduce决策树、回归对车祸发生率影响因素可视化分析
|
1月前
|
SQL 关系型数据库 MySQL
【MySQL】慢SQL分析流程
【4月更文挑战第1天】【MySQL】慢SQL分析流程
|
2月前
|
分布式计算 监控 Java
Spark学习---day06、Spark内核(源码提交流程、任务执行)
Spark学习---day06、Spark内核(源码提交流程、任务执行)
|
4月前
|
机器学习/深度学习 分布式计算 算法
Spark MLlib简介与机器学习流程
Spark MLlib简介与机器学习流程
|
4月前
|
存储 SQL 分布式计算
性能优化:Spark SQL中的谓词下推和列式存储
性能优化:Spark SQL中的谓词下推和列式存储
|
4月前
|
SQL 分布式计算 测试技术
使用UDF扩展Spark SQL
使用UDF扩展Spark SQL
|
4月前
|
SQL 数据采集 分布式计算
Spark SQL中的聚合与窗口函数
Spark SQL中的聚合与窗口函数