💖每天拿出20分钟,带你入门涨薪3k的ElasticSearch全文搜索引擎(2)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Kibana是一个针对Elasticsearch的开源分析及可视化平台,使用Kibana可以查询、查看并与存储在ES索引的数据进行交互操作,使用Kibana能执行高级的数据分析,并能以图表、表格和地图的形式查看数据。Kibana与Elasticsearch版本保持严格一致。

1.JPG

四、Kibana


4.1、概述


Kibana是一个针对Elasticsearch的开源分析及可视化平台,使用Kibana可以查询、查看并与存储在ES索引的数据进行交互操作,使用Kibana能执行高级的数据分析,并能以图表、表格和地图的形式查看数据。Kibana与Elasticsearch版本保持严格一致。


4.2、下载安装Kibana


下载Kibana


下载链接


安装下载Kibana

rpm -ivh kibana-6.2.4-x86_64.rpm
复制代码


查找kibana的安装位置

find / -name kibana
复制代码


编辑kibana配置文件

vim /etc/kibana/kibana.yml
复制代码


修改配置

#ES服务器主机地址
server.host: "192.168.202.200"         
#ES服务器地址
elasticsearch.hosts: ["http://192.168.202.200:9200"]   
复制代码


2.JPG


启动kibana

# 启动kibana
systemctl start kibana
# 停止kibana
systemctl stop  kibana
# 查看1kibana状态
systemctl status kibana
复制代码


访问测试

kibana默认端口为5601 使用主机:端口直接访问即可 。

3.JPG



五、Kibana的基本操作


5.1、索引的基本操作


5.1.1、创建索引


put /student/
复制代码


5.1.2、删除索引


delete /student
复制代码


5.1.3、删除所有索引


delete /*
复制代码


5.1.4、查看所有索引信息


get /_cat/indices?v
复制代码


5.2、类型的基本操作


5.2.1、创建类型


创建/shop索引并创建(product)类型,这种方式创建类型要求索引不能存在。


PUT /shop             
{
  "mappings": {
    "product": {
      "properties": {
          "title":    { "type": "text"  },
          "name":     { "type": "text"  },
          "age":      { "type": "integer" },
          "created":  {
             "type":   "date"
            }
          }
      }
    }
}
复制代码


5.2.1、查看类型


# 语法格式
get /索引名/_mapping/类型名
# 示范
get /shop/_mapping/product
复制代码


5.3、文档的基本操作


5.3.1、添加文档


# /索引/类型/id
PUT /school/student/1   
{
  "name":"xiaolin",
  "age":23,
  "bir":"2012-12-12",
  "content":"这是一个好一点的学生"
}
复制代码


5.3.2、查询文档


GET /school/student/1
# 以下是返回结果
{
  "_index": "school",
  "_type": "student",
  "_id": "1",
  "_version": 1,
  "found": true,
  "_source": {
    "name": "xiaolin",
    "age": 23,
    "bir": "2012-12-12",
    "content": "这是一个好一点的学生"
  }
}
复制代码


5.3.3、删除文档


DELETE /school/student/1
# 以下是返回结果
{
  "_index": "school",
  "_type": "student",
  "_id": "1",
  "_version": 2,
  "result": "deleted", #删除成功
  "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
  },
  "_seq_no": 1,
  "_primary_term": 1
}
复制代码


5.3.4、更新文档


5.3.4.1、第一种方式(更新原有的数据)


POST /school/student/1/_update
    {
      "doc":{
        "name":"xiaohei"
      }
    }
复制代码


5.3.4.2、第二种方式(添加新数据)


POST /school/student/1/_update
    {
      "doc":{
        "name":"xiaohei",
        "age":11,
        "dpet":"hello world"
      }
    }
复制代码


六、Query高级检索


6.1、检索方式


ES官方提供了两中检索方式:


  1. 一种是通过 URL 参数进行搜索,类似:GET /索引/类型/_search?参数
  2. 一种是通过 DSL(Domain Specified Language) 进行搜索,类似:GET /索引/类型/_search {}


4.JPG


官方更推荐使用第二种方式,第二种方式是基于传递JSON作为请求体(request body)格式与ES进行交互,这种方式更强大,更简洁


6.2、准备数据


# 删除索引
DELETE /ems
# 创建索引并指定类型
PUT /ems
{
  "mappings":{
    "emp":{
      "properties":{
        "name":{
          "type":"text"
        },
        "age":{
          "type":"integer"
        },
        "bir":{
          "type":"date"
        },
        "content":{
          "type":"text"
        },
        "address":{
          "type":"keyword"
        }
      }
    }
  }
}
# 插入测试数据
PUT /ems/emp/_bulk
  {"index":{}}
  {"name":"小黑","age":23,"bir":"2012-12-12","content":"为开发团队选择一款优秀的MVC框架是件难事儿,在众多可行的方案中决择需要很高的经验和水平","address":"北京"}
  {"index":{}}
  {"name":"王小黑","age":24,"bir":"2012-12-12","content":"Spring 框架是一个分层架构,由 7 个定义良好的模块组成。Spring 模块构建在核心容器之上,核心容器定义了创建、配置和管理 bean 的方式","address":"上海"}
  {"index":{}}
  {"name":"张小五","age":8,"bir":"2012-12-12","content":"Spring Cloud 作为Java 语言的微服务框架,它依赖于Spring Boot,有快速开发、持续交付和容易部署等特点。Spring Cloud 的组件非常多,涉及微服务的方方面面,井在开源社区Spring 和Netflix 、Pivotal 两大公司的推动下越来越完善","address":"无锡"}
  {"index":{}}
  {"name":"win7","age":9,"bir":"2012-12-12","content":"Spring的目标是致力于全方位的简化Java开发。 这势必引出更多的解释, Spring是如何简化Java开发的?","address":"南京"}
  {"index":{}}
  {"name":"梅超风","age":43,"bir":"2012-12-12","content":"Redis是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API","address":"杭州"}
  {"index":{}}
  {"name":"张无忌","age":59,"bir":"2012-12-12","content":"ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口","address":"北京"}
复制代码


6.3、URL检索


GET /ems/emp/_search?q=*&sort=age:asc
复制代码


  • _search:搜索的API
  • q=* :匹配所有文档
  • sort :以结果中的指定字段排序
  • asc:排序方式(倒序or顺序)


6.4、DSL高级检索(Query)


GET /ems/emp/_search
{
    "query": {"match_all": {}},
    "sort": [
        {
            "age": {
                "order": "desc"
            }
        }
    ]
}
复制代码


6.4.1、match_all


这个关键字表示返回索引中的1全部文档。


GET /ems/emp/_search
{
  "query": { "match_all": {} }
} 
复制代码


6.4.2、size


size关键字用于指定查询结果的条数,默认返回10条。


GET /ems/emp/_search
{
  "query": { "match_all": {} },
  "size": 1
} 
复制代码


6.4.3、from


from:用来指定起始返回的位置,和size连用实现分页效果。


GET /ems/emp/_search
{
      "query": {"match_all": {}},
      "sort": [
        {
          "age": {
            "order": "desc"
          }
        }
      ],
      "size": 2, 
      "from": 1
}
### 6.4.4、_source
_source是一个数组,用于指定查询结果中返回指定字段。
```markdown
GET /ems/emp/_search
{
      "query": { "match_all": {} },
      "_source": ["account_number", "balance"]
}
复制代码


6.4.5、term


term用来使用关键词查询。


GET /ems/emp/_search
{
  "query": {
    "term": {
      "address": {
        "value": "北京"
      }
    }
  }
}
复制代码


注意事项:


  1. 通过使用term查询得知ES中默认使用分词器为标准分词器(StandardAnalyzer),标准分词器对于英文单词分词十分友好,但是对于中文单字分词是非常不友好的。
  2. 通过使用term查询得知,在ES的Mapping Type 中 keyword , date ,integer, long , double , boolean or ip 这些类型不分词,只有text类型分词。


6.4.6、range


range用来指定查询指定范围内的文档。


GET /ems/emp/_search
{
  "query": {
    "range": {
      "age": {
        "gte": 8,
        "lte": 30
      }
    }
  }
}
复制代码


6.4.7、prefix


prefix用来检索含有指定前缀的关键词的相关文档。


GET /ems/emp/_search
{
  "query": {
    "prefix": {
      "content": {
        "value": "redis"
      }
    }
  }
}
复制代码


6.4.8、wildcard


wildcard用于通配符查询:


  • :用来匹配一个任意字符。
  • *:用来匹配任意多个字符。


GET /ems/emp/_search
{
  "query": {
    "wildcard": {
      "content": {
        "value": "re*"
      }
    }
  }
}
复制代码


6.4.9、ids


ids关键字用来根据一组id获取多个对应的文档,他的值是数组类型。


GET  /ems/emp/_search
{
  "query": {
    "ids": {
      "values": ["lg5HwWkBxH7z6xax7W3_","lQ5HwWkBxH7z6xax7W3_"]
    }
  }
}
复制代码


6.4.10、fuzzy


fuzzy用来模糊查询含有指定关键字的文档,他有一个最大模糊错误,必须在0~2之间:


  1. 搜索关键词长度为2,不允许存在模糊,最大模糊错误为0。
  2. 搜索关键词长度为3-5,允许一次模糊,最大模糊错误为0和1。
  3. 搜索关键词长度大于5,最大模糊错误为2


GET /ems/emp/_search
{
  "query": {
    "fuzzy": {
      "content":"spring"
    }
  }
}
复制代码


6.4.11、bool


bool关键字用来组合多个条件实现复杂查询。


GET /ems/emp/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "range": {
            "age": {
              "gte": 0,
              "lte": 30
            }
          }
        }
      ],
      "must_not": [
        {"wildcard": {
          "content": {
            "value": "redi?"
          }
        }}
      ]
    }
  },
  "sort": [
    {
      "age": {
        "order": "desc"
      }
    }
  ]
}
复制代码


6.4.12、highlight


highlight关键字可以让符合条件的文档中的关键词高亮,并没有对原始数据进行高亮,他是将符合高亮的文档查询出来,并加上前后缀。我们可以自定义高亮html标签:


  1. pre_tags:前缀
  2. post_tags:后缀


GET /ems/emp/_search
{
  "query":{
    "term":{
      "content":"框架"
    }
  },
  "highlight": {
    "pre_tags": ["<span style='color:red'>"],
    "post_tags": ["</span>"],
    "fields": {
      "*":{}
    }
  }
}
复制代码


如果需要多字段高亮,可以使用require_field_match关键字将他的值设置为false开启多字段高亮。


GET /ems/emp/_search
{
  "query":{
    "term":{
      "content":"框架"
    }
  },
  "highlight": {
    "pre_tags": ["<span style='color:red'>"],
    "post_tags": ["</span>"],
    "require_field_match":false,
    "fields": {
      "*":{}
    }
  }
}
复制代码


6.4.13、multi_match


multi_match用于多字段查询,他需要注意的点:


  1. 如果搜索的字段分词,他会对query进行先分词再搜索。
  2. 如果搜索的字段不分词,他会直接使用query整体进行该字段搜索,建议在可分词的字段进行检索


GET /ems/emp/_search
{
  "query": {
    "multi_match": {
      #搜索字段
      "query": "中国",
      #去哪些字段搜索
      "fields": ["name","content"] #这里写要检索的指定字段
    }
  }
}
复制代码


6.4.14、query_string


query_string用于多字段分词查询。


GET /dangdang/book/_search
{
  "query": {
    "query_string": {
      "query": "中国声音",
      "analyzer": "ik_max_word", 
      "fields": ["name","content"]
    }
  }
}
复制代码


6.5、ElasticSearch底层原理


ElasticSearch的底层核心是倒排索引表。


5.JPG


索引区:对文档分词之后的结果,例如:name:[张:0:1] ("张"这个关键字在0号文档中出现了1次)。


元数据区:原始放入的一个个的文档。


6.5.1、正排索引


正排表是以文档的ID为关键字,表中记录文档中每个字的位置信息,查找时扫描表中每个文档中字的信息直到找出所有包含查询关键字的文档。一般是通过key,去找value。

他的结构是 : 文档1的ID →单词1:出现次数,出现位置列表;单词2:出现次数,出现位置列表。


当用户在主页上搜索关键词“华为手机”时,假设只存在正向索引(forward index),那么就需要扫描索引库中的所有文档,找出所有包含关键词“华为手机”的文档,再根据打分模型进行打分,排出名次后呈现给用户。因为互联网上收录在搜索引擎中的文档的数目是个天文数字,这样的索引结构根本无法满足实时返回排名结果的要求。


6.JPG


6.5.2、倒排索引


搜索引擎会将正向索引重新构建为倒排索引,即把文件ID对应到关键词的映射转换为关键词到文件ID的映射,每个关键词都对应着一系列的文件,这些文件中都出现这个关键词。他是来利用词的关键词去找文档。


他的结构是:“关键词1”:“文档1”的ID,“文档2”的ID


7.JPG



相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2月前
|
存储 Java API
Elasticsearch 7.8.0从入门到精通
这篇文章详细介绍了Elasticsearch 7.8.0的安装、核心概念(如正排索引和倒排索引)、RESTful风格、各种索引和文档操作、条件查询、聚合查询以及在Spring Boot中整合Elasticsearch的步骤和示例。
156 1
Elasticsearch 7.8.0从入门到精通
|
3月前
|
数据可视化 Java Windows
Elasticsearch入门-环境安装ES和Kibana以及ES-Head可视化插件和浏览器插件es-client
本文介绍了如何在Windows环境下安装Elasticsearch(ES)、Elasticsearch Head可视化插件和Kibana,以及如何配置ES的跨域问题,确保Kibana能够连接到ES集群,并提供了安装过程中可能遇到的问题及其解决方案。
Elasticsearch入门-环境安装ES和Kibana以及ES-Head可视化插件和浏览器插件es-client
|
1月前
|
存储 JSON Java
ELK 圣经:Elasticsearch、Logstash、Kibana 从入门到精通
ELK是一套强大的日志管理和分析工具,广泛应用于日志监控、故障排查、业务分析等场景。本文档将详细介绍ELK的各个组件及其配置方法,帮助读者从零开始掌握ELK的使用。
|
1月前
|
自然语言处理 监控 数据可视化
|
3月前
|
自然语言处理 搜索推荐 数据库
高性能分布式搜索引擎Elasticsearch详解
高性能分布式搜索引擎Elasticsearch详解
95 4
高性能分布式搜索引擎Elasticsearch详解
|
2月前
|
自然语言处理 搜索推荐 关系型数据库
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
这篇文章是关于Elasticsearch全文搜索引擎的学习指南,涵盖了基本概念、命令风格、索引操作、分词器使用,以及数据的增加、修改、删除和查询等操作。
36 0
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
|
2月前
|
开发框架 监控 搜索推荐
GoFly快速开发框架集成ZincSearch全文搜索引擎 - Elasticsearch轻量级替代为ZincSearch全文搜索引擎
本文介绍了在项目开发中使用ZincSearch作为全文搜索引擎的优势,包括其轻量级、易于安装和使用、资源占用低等特点,以及如何在GoFly快速开发框架中集成和使用ZincSearch,提供了详细的开发文档和实例代码,帮助开发者高效地实现搜索功能。
193 0
|
2月前
|
自然语言处理 搜索推荐 Java
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(一)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图
58 0
|
2月前
|
存储 自然语言处理 搜索推荐
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
40 0
|
1月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
46 5
下一篇
DataWorks